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1 Introduction

Researchers are frequently interested in estimating heterogeneous effects on binary out-

comes in different population subgroups. For example, one may want to study gender

differences in job satisfaction by occupation. The existing literature finds that women on

average are as satisfied or more satisfied with their jobs than men, even though women

tend to have a lower pay and are generally disadvantaged in the labor market (Clark,

1997; Sloane and Williams, 2000, among others). This phenomenon is known as “the

paradox of the contented female worker” (Crosby, 1982). An important research question

is whether this paradox manifests itself differently in different types of jobs. Other ex-

amples include studying the determinants of high-school dropouts by race, gender, and

socio-economic status, and investigating self-employment outcomes by age and education

level. Estimating heterogeneous treatment effects is also often of interest.

In the applied literature, it is common to estimate group-specific parameters by divid-

ing the sample into corresponding subsamples and performing the estimation separately

for each group. While this approach is intuitively appealing, it generally results in incon-

sistent estimators when sorting into groups is not random. Similar to linear models (Vella,

1988), consistent estimators of heterogeneous parameters can only be obtained if the full

information set is utilized, i.e. when each group is considered as part of the entire popu-

lation. The estimation is further complicated when considering panel data models, which

are characterized by unobserved unit-specific hererogeneity and cross-group transitions

over time. The present paper discusses methods that address nonrandom sorting and

produce consistent estimators of heterogeneous parameters and partial effects in static

binary response panel data models.

The related literature goes back to the studies of linear switching regression mod-

els (Goldfeld and Quandt, 1973; Lee 1978; Maddala and Nelson, 1975; Maddala 1983).

Such models specify two equations, where the applicability of either equation depends
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on the endogenous switching from one regime to the other. Another relevant strand of

the literature includes studies of program evaluation and estimation of treatment effects.

Analogous to switching regression models, program evaluation studies focus on address-

ing endogenous self-selection into treatment. One parameter of interest is the effect of

treatment on the treated, which can be formulated within either a switching regression

or self-selection framework (Bjorklund and Moffitt, 1987; Heckman et al., 2006). Fur-

thermore, several studies have proposed methods for estimating heterogeneous treatment

effects in linear models using the instrumental variables methodology (Heckman et al.,

2006; Basu, 2014, among others).

The problem of nonrandom selection is discussed in studies of sample selection, includ-

ing the seminal paper by Heckman (1979). Although such models consider homogeneous

parameters, the selection problem arises because the dependent variable is not observed

for some part of the population. The existing literature discusses methods for addressing

sample selection in linear and binary response models; both cross section and panel data

models have been considered (Heckman, 1979; Kyriazidou, 1997; Newey, 2009; Semykina

and Wooldridge, 2018; Wooldridge, 1995, among others).

Regarding heterogeneous effects in binary response models, several studies discuss

a switching probit model, where the endogenous switching is between two regimes, and

parameters are regime-specific. For example, Manski et al. (1992) study the cross section

case, while Carrasco (2001) proposes an estimator for dynamic panel data models. To

the best of our knowledge, estimating heterogeneous effects in models with arbitrary

number of groups has not been considered so far. The present paper proposes methods for

estimating heterogeneous effects in static binary response panel data models with two or

more groups. The correlated random effects approach is used to account for the presence of

unobserved unit-specific heterogeneity that may be correlated with explanatory variables.

An arbitrary number of ordered or unordered groups is permitted.

The rest of the paper is structured as follows. Section 2 presents binary response
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models with heterogeneous effects. Estimation of population parameters and partial ef-

fects is discussed in Section 3. Section 4 presents asymptotic theory; simulation results

are discussed in Section 5. Section 6 contains an empirical application, which estimates

gender differences in job satisfaction by occupation type. Section 7 concludes.

2 Heterogeneity in binary response panel data mod-

els

2.1 General Setup

Let the population consist of J fixed groups (or subpopulations). Assume that the number

of periods, T , is fixed, and N →∞, where N is the cross section sample size. This paper

considers the following binary response model with heterogeneous effects:

y∗itj = xitβj + cij + uitj, (1)

yitj = 1[y∗itj > 0], t = 1, . . . , T, j = 1, . . . , J,

where y∗itj is a continuous latent variable, yitj is the observed binary outcome for unit i

in group j in period t, and 1[·] is an indicator function equal to one if the expression in

brackets is true. The vector of explanatory variables, xit, is 1 × K, and βj is a K × 1

group-specific vector of parameters. Define xi = (xi1, . . . ,xiT ) and make the following

assumption:

Assumption 1 uitj ⊥⊥ (xi, cij)

The assumption states that xit is independent of the idiosyncratic error, but allows xit

to be correlated with a time-constant group-specific unobserved effect cij. It also indicates

that the observed covariates are strictly exogenous conditional on cij, i.e. past and future
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values of xit do not affect the distribution of yit after accounting for the current values of

covariates and the unobserved effect.

Note that a given cross section unit may appear in different groups in different t.

Transitions may occur due to changes in both time-varying covariates and idiosyncratic

shocks and may be endogenous with respect to yitj. For example, a shock to the main

outcome may affect both the probability of success in group j and the probability of

belonging to group j in period t. Even if j is constant across t, group sorting is not random

if time-constant and/or time-varying unobservables affecting the group assignment are

correlated with the unobservables in (1). As discussed in detail below, such endogeneity

causes inconsistency in the estimators of βj obtained by estimating (1) separately for each

j.

Let dit be a discrete random variable identifying groups, dit = {1, 2, . . . , J}. After

defining dichotomous indicators for each group as sitj = 1[dit = j], t = 1, . . ., T, j =

1, . . . , J , the outcome for unit i in a given period can be written as

yit =
J∑
j=1

sitjyitj, t = 1, . . . , T. (2)

Apart from βj, j = 1, . . . , J , parameters of interest include partial effects. These

can be of two types. We define the unconditional partial effect (PEU
j ) as a change in

the probability of success in group j due to an increase in variable x for a randomly

selected unit from the population. In the population, the unconditional partial effect of

a continuous explanatory variable is

PEU
j,k =

∂P(yitj = 1|xit, cij)
∂xitk

, j = 1, . . . , J. (3)

On the other hand, we define a conditional partial effect (PEC
j ) as a change in the
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probability of success due to an increase in x for a unit in group j.1 For a continuous

covariate,

PEC
j,k =

∂P(yit = 1|dit = j,xit, cij)

∂xitk
=
∂P(yitj = 1|dit = j,xit, cij)

∂xitk
j = 1, . . . , J. (4)

Although both effects may be of interest, PEU
j is often deemed more suitable for

cross-group comparisons, whereas PEC
j is useful when focusing on a particular group. For

example, a commonly used application of PEC
j is the estimation of the average treatment

effect on the treated in the policy evaluation literature.

In practice, cij is not observed, which makes it impossible to estimate PEU
j,k and

PEC
j,k. Instead, it is common to estimate average partial effects (APE) that are obtained

by ‘averaging’ over the distribution of the unobserved effect, cij:

APEU
j,k = Ecj

[
∂P(yitj = 1|xit, cij)

∂xitk

]
, (5)

APEC
j,k = Ecj

[
∂P(yitj = 1|dit = j,xit, cij)

∂xitk

]
, j = 1, . . . , J.

If group assignment is random, then P(yitj = 1|xit, cij) = P(yitj = 1|dit = j,xit, cij),

and consistent estimators of model parameters are obtained by estimating (1) separately

for each j. However, because of self-selection and other factors sorting into groups may

be nonrandom, which causes inconsistency. In this paper, we allow for a possibility that

P(yitj = 1|dit = j,xit, cij) 6= P(yitj = 1|xit, cij) and discuss how it can be addressed when

obtaining consistent estimators of βj and APE. We start by considering a simple case

with only two groups and then discuss more general models with J > 2, where groups

may be ordered or unordered.

1Both PEU
j and PEC

j are changes in probabilities conditional on (xit, cij). Hence, the use of ”uncondi-
tional” partial effects is not fully accurate. Here, we use this terminology for convenience, to distinguish
between partial effects conditional on being in group j and partial effects when not conditioning on
dit = j.
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2.2 Model for two groups

Let yitj be determined as in equation (1), where J = 2. Applications of such models

include, for example, examining labor force participation among married and non-married

women, as well as estimating the determinants of dropout incidents among economically

disadvantaged and other students. Assume that sorting into groups is determined by the

value of a latent variable d∗it,

d∗it = zitδ + bi + vit, (6)

dit = 1 if d∗it ≤ 0,

dit = 2 if d∗it > 0,

where zit is a 1×L vector of exogenous variables, bi is a time-constant unobserved effect,

and vit is an idiosyncratic error. Setting the cut point at zero is at no cost, as long as

zit contains an intercept. Vector zit = (xit, zit1) contains at least one additional variable

that is not in xit.
2 Similar to the main equation, define zi = (zi1, . . . , ziT ) and assume

that the following holds:

Assumption 2 vit ⊥⊥ (zi, bi).

Hence, zit is strictly exogenous conditional on bi, but may be correlated with bi. This

correlation causes an omitted variable problem that has to be resolved before addressing

nonrandom sorting. Building upon the work by Mundlak (1978) and Chamberlain (1980),

unobserved effects can be modeled as

cij = z̄iψcj + acij, j = 1, 2, (7)

bi = z̄iψb + abi,

2Strictly speaking, the exclusion restriction is not required for identification. However, when zit = xit,
identification relies exclusively on the functional form of the likelihood function, which is less reliable.
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where z̄i =
∑T

t=1 zit, and (aci1, aci2, abi) are independent of zi. This modeling approach

has been previously used in both theoretical and applied work (Abrevaya and Dahl, 2008;

Jäckle and Himmler, 2010; Papke and Wooldridge, 2008; Semykina, 2018; Semykina and

Wooldridge, 2010, 2018; Wooldridge, 1995, among others).3 Note that although zit may

contain time-constant covariates, equation (7) indicates that their causal effects cannot be

distinguished from the impact of cij and bi, unless they are independent of the unobserved

effects. Nevertheless, it is important to include such variables as controls to prevent

inconsistency due to an omitted variable problem.

Note that modeling the unobserved effect as in (7) is different from the approach

employed by Carrasco (2001). Carrasco (2001) considers a switching probit model for

panel data, but accounts for unobserved heterogeneity by including lagged dependent

variables in both main and sorting equations. That approach works well when estimating

dynamic models and studying state dependence. In this paper, we focus on estimating

static models, which are widely used in applied research, including the estimation of

treatment effects. Hence, we model the unobserved effect as in (7).

Using (7), equations (1) and (6) can be written as

yitj = 1[xitβj + z̄iψcj + ηitj > 0], t = 1, . . . , T, j = 1, 2, (8)

dit = 1 if zitδ + z̄iψb + εit ≤ 0,

dit = 2 if zitδ + z̄iψb + εit > 0.

where ηitj = acij+uitj, j = 1, 2, and εit = abi+vit. We formulate the following assumption:

Assumption 3 hello

(i) (ηtj, εt) are independent of (z1, . . . , zT ), j = 1, 2, t = 1, . . . , T .

3Mundlak (1978) has shown that when this method is used for estimating linear models, the resulting

β̂j is identical to the fixed effects estimator of βj .
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(ii) For each t,

 ηtj

εt

 ∼ Normal


 0

0

 ,
 1

ρj 1


 , j = 1, 2. (9)

(iii) 0 < 1
T

∑T
t=1 P(dt = j) < 1, j = 1, 2.

The assumption is stated for the underlying population; hence, subscript i is dropped.

However, by random sampling, it also holds for a randomly selected unit from the popu-

lation. Part (i) imposes strict exogeneity of covariates in (8). The normality assumption

in (ii), is rather standard in the literature and permits obtaining formulae for conditional

probabilities and partial effects. Because each i can only belong to one group in a given t,

Corr(ηit1, ηit2) is not defined. Moreover, note that Corr(ηit1, ηis2) and Corr(ηitj, εis), t 6= s,

are not specified, but can be (and likely are) different from zero. Finally, part (iii) ensures

that there are cross section units in each group in at least some periods in the population.

Under Assumption 3, the two-group model is a switching probit model (Carrasco,

2001), which is analogous to a linear switching regression model discussed in the literature

(Lee 1978; Maddala and Nelson, 1975; Maddala 1983; Manski et al., 1992). In the

linear case, nonrandom group assignment is usually addressed by constructing a correction

term. In binary response models, however, this approach is inapplicable because of the

nonlinearity of the conditional mean. Instead, using the properties of normal distributions,

we can write

ηitj = ρjεit + eitj, (10)

eitj|zi, εit ∼ Normal(0, 1− ρ2
j),

so that yitj = 1[xitβj + z̄iψcj + ρjεit + eitj > 0], t = 1, . . . , T , j = 1, 2. Clearly, any

likelihood function that ignores the error correlation would be misspecified and would
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result in inconsistent estimators.

Define wit = (xit, z̄i), θj = (β′j,ψ
′
cj)
′, qit = (zit, z̄i), and π = (δ′,ψ′bj)

′. Then, the

conditional probability for j = 1, period t, can be written as

P(yit = 1|dit = 1, zi) =
P(−eit1 < witθ1 + ρ1εit, εit ≤ −qitπ|zi)

P(εit ≤ −qitπ|zi)
(11)

=

∫ −qitπ

−∞ Φ

(
witθ1+ρ1ε√

1−ρ21

)
φ(ε)dε

1− Φ(qitπ)
,

and the corresponding conditional probability for j = 2 is

P(yit = 1|dit = 2, zi) =

∫∞
−qitπ

Φ

(
witθ2+ρ2ε√

1−ρ22

)
φ(ε)dε

Φ(qitπ)
, (12)

where φ(·) and Φ(·) are standard normal density and cumulative distribution functions,

respectively. Note that P(yitj = 1|zi) = Φ(witθj) and is the same regardless of the number

of groups and ordering. These probabilities can be used to obtain APEU
j and APEC

j , as

will be discussed in Section 3.

2.3 Model for multiple ordered groups

Let the total number of groups, J , exceed two. Using the unobserved effects model in (7),

define vectors qit and π as in the previous section. Also, define d∗it and dit as

d∗it = qitπ + εit, (13)

dit = j if Cj−1 < d∗it ≤ Cj, j = 1, . . . , J,

C0 = −∞, and CJ =∞.

Such a model is applicable, for example, when the goal is to study the probability of

self-employment by age or education level.
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Similar to a two-group case, it is convenient to assume that the distribution of εit is

normal, which results in an ordered probit model that now has to be combined with a

main binary response outcome. Formally, let Assumption 3 hold for j = 1, 2, . . . , J , so

that the errors are independent of zi and have a joint normal distribution. Then, using

the argument similar to the one in Section 2.2, we can write

yitj = 1[witθj + ρjεit + eitj > 0], t = 1, . . . , T, j = 1, . . . , J, (14)

eitj|wit, εit ∼ Normal(0, 1− ρ2
j),

where wit and θj are defined as in Section 2.2.

From (13) and (14), the conditional probabilities for each group are

P(yit = 1|dit = j, zi) =

∫ Cj−qitπ

Cj−1−qitπ
Φ

(
witθj+ρjε√

1−ρ2j

)
φ(ε)dε

Φ(Cj − qitπ)− Φ(Cj−1 − qitπ)
, j = 2, . . . , J − 1,

C0 = −∞, CJ =∞.

2.4 Model for unordered multiple groups

In some cases, there may be more than two groups that are not ordered. For example,

one might want to study the determinants of job satisfaction or promotion among workers

in different occupations. Then, the choice of dit = j can be described in the context of a

multinomial response model. To formalize ideas, define

d∗itj = qitπj + εitj, t = 1, . . . , T, j = 1, . . . , J, (15)

where the parameter vector and error term now vary by group.

Following the standard formulation of a multinomial response model, the cross-section

unit i will be in group j in period t if it has the highest chance of belonging to that group.
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In the case of self-selection, choice j is the best option in the available set:

dit = j if d∗itj = max{d∗it1, d∗it2, . . . , d∗itJ} (16)

The choice in (16) will be made if qitπj+εitj > qitπl+εitl for all l 6= j. It is clear that only

differences between d∗itj are identified, so that a reference category needs to be assigned –

a feature that is common to all multinomial response models. We formulate the following

assumption:

Assumption 4 hello

(i) (ηtj, εt1, . . . , εtJ) are independent of (z1, . . . , zT ), for j = 1, . . . , J , t = 1, . . . , T .

(ii) For each t,



ηtj

εt1

. . .

εtj

. . .

εtJ


∼ Normal





0

0

. . .

0

. . .

0


,



1 0 . . . ρj . . . 0

0 1 . . . 0 . . . 0

. . . . . . . . . . . . . . . . . .

ρj 0 . . . 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 0 . . . 1




, j = 1, . . . , J.

(17)

(iii) 0 < 1
T

∑T
t=1 P(dt = j) < 1, j = 1, . . . , J .

Note that Assumption 4 imposes restrictions on the variance-covariance matrix. Theo-

retically, one could allow the variance in part (ii) to be completely unrestricted. However,

in practice it is usually necessary to impose restrictions to ensure feasibility of the es-

timation. In the present context, the imposed restrictions are reasonable. Specifically,

Cov(εtj, εtl) = 0 for j 6= l is effectively true by independence across i because each cross sec-

tion unit can only belong to one group in a given t. For the same reason, Cov(ηtj, εtl) = 0

11



for j 6= l holds. Importantly, Cov(εtj, εsl) and Cov(ηtj, εsl), s 6= l, are left completely

unrestricted, which is consistent with what would be observed in the population. Indeed,

these covariances are likely different from zero because of transitions across groups over

time.

Define ε̃itl = εitj − εitl, and π̃l = πj − πl, for l 6= j. Then, under Assumption 4, for

group j = 1, for example, we obtain

P(yit = 1, dit = 1|zi) =

∫ ∞
−witθ1

∫ ∞
−qitπ̃2

. . .

∫ ∞
−qitπ̃J

φ(eit1, ε̃2 . . . ε̃J ; Σ)du1dε̃2 . . . dε̃J ,(18)

P(dit = 1|zi) =

∫ ∞
−qitπ̃2

. . .

∫ ∞
−qitπ̃J

φ(ε̃2, . . . , ε̃J ; Σ̃)dε̃2 . . . dε̃J ,

where Σ and Σ̃ are variance-covariance matrices of vectors (eit1, ε̃2 . . . ε̃J)′ and (ε̃2 . . . ε̃J)′,

respectively. Using (18), the conditional probability is obtained as P (yit = 1|dit = 1, zi) =

P (yit=1,dit=1|zi)
P (dit=1|zi) . Probabilities P (yit = 1|dit = j, zi), j = 2, . . . , J , are obtained similarly.

Because equation (18) does not have a closed form solution, one would need to nu-

merically evaluate a J-dimensional integral. Although simulated likelihood methods have

been helpful in addressing computational difficulties, the estimation may still be prob-

lematic if there are more than four groups, especially when the number of observations is

not very large. Both the number of parameters and dimension of the integral grow with

the number of groups, which may cause computational issues (e.g. nonconvergence) when

performing the optimization. Therefore, we also discuss a different approach.

The unordered multiple groups case can be considered in the context of selection

models, where the choice is made between the best option (observed choice) and the

second best alternative. Define a binary indicator for group j in period t as

ωitj = 1[qitπj + εitj > d̄itj], (19)

d̄itj = max
l 6=j
{qitπl + εitl},
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which can be re-written as

ωitj = 1[qitπ̄j + ε̄itj > 0], t = 1, . . . , T, j = 1, . . . , J, (20)

where π̄j is the difference between πj and the vector of parameters that correspond to d̄itj,

and ε̄itj is the difference between εitj and the error corresponding to d̄itj. Because in the

unordered case the second best option is not known, π̄j is a weighted average of πj −πl,

l 6= j, where weights depend on the probability that group l is the best alternative to j.

Notice that in this model it is not possible to estimate πj. Correspondingly, conditional

APE cannot be estimated. However, the consistent estimators of θ and APEU can be

obtained.

Assumption 5 hello

(i) (ηtj, ε̄tj) are independent of (z1, . . . , zT ), j = 1 . . . , J , t = 1, . . . , T .

(ii) For each t,

 ηtj

ε̄tj

 ∼ Normal


 0

0

 ,
 1

ρj 1


 , j = 1, . . . , J. (21)

(iii) 0 < 1
T

∑T
t=1 P(dt = j) < 1, j = 1, . . . , J .

Under Assumption 5, conditional probabilities for each j and t are obtained as

P(yit = 1|dit = j, zi) = P(yit = 1|ωitj = 1, zi) =

∫ qitπ̄j
−∞ Φ

(
witθj+ρj ε̄√

1−ρ2j

)
φ(ε̄)d¯̄ε

Φ(qitπ̄j)
. (22)
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3 Estimation

To estimate the models presented in Section 2, one can use the maximum likelihood

estimator (MLE). Full MLE would be an efficient estimator, but it requires specifying

the conditional density of (yi1, ..., yiT , di1, ..., diT ), given zi. Because {yi1, ..., yiT} and

{di1, ..., diT} are likely serially dependent (largely due to the presence of time-constant

unobserved effects), the joint density function would generally be very complicated. That

would increase the computational cost and could make the estimation infeasible, unless

additional restrictions on the error variance-covariance matrix are imposed. In this pa-

per, we use a more feasible partial MLE estimator, which only requires specifying the

conditional density in a given t.

Consider a general model with J ≥ 2, but for the moment ignore the second unordered

groups model discussed at the end of Section 2.4. Denote Yit = (yit, dit). For each t, the

joint density of Yit conditional on zi for observation i is

ft(Yit|zi,γ) = Pyitsit1
it,11 · P

(1−yit)sit1
it,01 · . . . · PyitsitJ

it,1J · P
(1−yit)sitJ
it,0J , (23)

where Pit,1j = P(yit = 1, dit = j|zi;γ), Pit,0j = P(yit = 0, dit = j|zi;γ), j = 1, ..., J ,

γ = (θ′1, . . . ,θ
′
J ,π, ρ1, . . . , ρJ)′ for the models in Sections 2.2 and 2.3, and γ = (θ′1, . . . ,

θ′J , π̄1,. . ., π̄J , ρ1, . . . , ρJ)′ for the first model in Section 2.4.

Joint probabilities for the two-group model are

Pit,1j =

∫ −qitπ

−∞
Φ

witθj + ρjε√
1− ρ2

j

φ(ε)dε, (24)

Pit,0j =

∫ −qitπ

−∞

1− Φ

witθj + ρjε√
1− ρ2

j

φ(ε)dε, j = 1, 2.
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For ordered multiple groups, the probabilities are

Pit,1j =

∫ Cj−qitπ

Cj−1−qitπ

Φ

witθj + ρjε√
1− ρ2

j

φ(ε)dε, (25)

Pit,0j =

∫ Cj−qitπ

Cj−1−qitπ

1− Φ

witθj + ρjε√
1− ρ2

j

φ(ε)dε,

C0 = −∞, CJ =∞, j = 1, . . . , J.

In the unordered case, the first equation in (18) specifies Pit,1j for the first model in

Section 2.4. Probabilities for j = 2, . . . , J are obtained similarly. Changing the limits of

integration permits computing Pit,0j.

Denote lit(γ) = ln[ft(Yit|zi,γ)]. Partial MLE is obtained by solving the following

maximization problem:

max
γ

N∑
i=1

T∑
t=1

lit(γ). (26)

Optimization can be performed using usual optimization techniques, such as the

Newton-Raphson method and Berndt, Hall, Hall, and Hausman algorithm (Berndt, Hall,

Hall, and Hausman, 1974).

Section 2.4 discusses estimation of parameters in the unordered multiple groups model

under Assumption 4.2. For that model, for each group j the conditional density for

observation i in period t can be written as

ft(Yit|zi,γ) = P
yitωitj
it,11 · P

(1−yit)ωitj
it,01 · P(1−ωitj)

it,0 , (27)

where

Pit,11 =

∫ qitπ̄j

−∞
Φ

witθj + ρj ε̄√
1− ρ2

j

φ(ε̄)d¯̄ε, (28)
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Pit,01 =

∫ qitπ̄j

−∞

1− Φ

witθj + ρj ε̄√
1− ρ2

j

φ(ε̄)d¯̄ε,

Pit,0 = 1− Φ(qitπ̄j).

Then, γj can be estimated separately for each j by partial MLE.

As mentioned in Section 2, estimating APEs is often of interest. For all models,

unconditional APE of a continuous variable xk can be estimated as

ÂPE
U

j,k = β̂jk
1

NT

N∑
i=1

T∑
t=1

φ(witθ̂j), j = 1, . . . , J. (29)

To obtain the estimator of APEC
j , note that from (7) we can write

P(yj = 1|d = j,x, cj) = P(yj = 1|d = j, z, z̄, acj, abj, v), (30)

where we use the fact that d is a deterministic function of (z, z̄, abj, v) in the population.

After interchanging the integration and differentiation, it follows that conditional APE of

a continuous variable xk in group j is

∂Ez̄,acj ,abj ,v[P(yj = 1|d = j, z, z̄, acj, abj, v)]

∂xk
. (31)

Hence, for j = 2 in a two-group model, the time-averaged conditional APE can be

estimated as

ÂPE
C

2,k =
1

NT

N∑
i=1

T∑
t=1

[
δ̂k ·

φ(qitπ̂)

Φ(qitπ̂)
· Φ

(
witθ̂2 + ρ̂2qitπ̂√

1− ρ̂2
2

)
(32)

+
1

Φ(qitπ̂)
· β̂2k√

1− ρ̂2
2

·
∫ qitπ̂

−∞
φ

(
witθ̂2 + ρ̂2ε√

1− ρ̂2
2

)
φ(ε)dε− δ̂k ·

φ(qitπ̂)

Φ(qitπ̂)
· P̂C

it,12

]
,

where δ̂k, β̂2k, π̂, θ̂2, and ρ̂2, are the estimators of δk, β2k, π, θ2, and ρ2, respectively,
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and P̂C
it,12 is the estimator of P(yit = 1|dit = 2, zi), which is defined in equation (12).

Correspondingly, ÂPE1,k is obtained by replacing π̂ and δ̂k with−π̂ and−δ̂k, respectively,

and changing θ̂ and ρ̂ subscripts to one. Notice that when the group assignment is random,

the partial effects on the conditional probabilities are the same as the unconditional partial

effects. However, they are different when ρj 6= 0.

For the ordered groups model, the time-averaged conditional APE for each j can be

estimated using

ÂPE
C

j,k =
1

NT

N∑
i=1

T∑
t=1

 δ̂k
Φ(α̂j)− Φ(α̂j−1)

·

φ(α̂j−1)Φ

witθ̂j + ρ̂jα̂j−1√
1− ρ̂2

j

 (33)

− φ(α̂j)Φ

witθ̂j + ρ̂jα̂j√
1− ρ̂2

j


+

1

Φ(α̂j)− Φ(α̂j−1)
· β̂jk√

1− ρ̂2
j

·
∫ α̂j

−α̂j−1

φ

witθ̂j + ρ̂jε√
1− ρ̂2

j

φ(ε)dε

+ δ̂k ·
φ(α̂j)− φ(α̂j−1)

Φ(α̂j)− Φ(α̂j−1)
· P̂C

it,1j

}
,

Ĉ0 = −∞, ĈJ =∞, α̂j = Cj − qitπ̂,

where Ĉj and α̂j are the estimators of Cj and αj, respectively, and P̂C
it,1j is the estimator

of P(yit = 1|dit = j, zi) defined in equation (15).

Given the complexity of the conditional probability function for multiple unordered

groups, APEC
j for the first model in Section 2.4 would have to be obtained by numerically

computing the derivative. However, APEC
j for the second unordered groups model can

be estimated using (32) after replacing π̂ with π̂j.

From (32) and (33), it is seen that the sign of ÂPE
C

j,k does not necessarily coincide

with the sign of βjk. When xk increases, it affects not only the probability that yj = 1,

but also the probability that d = j. Consequently, more or fewer units are induced into

group j, so that the size and composition of the group change. Hence, the direction of the
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change in P(yj = 1|d = j) generally depends on both βjk and δk (or, δjk) and is uncertain.

However, if xk has no effect on sorting (δk = 0), only the second term in (32) and (33) is

different from zero, and the signs of ÂPE
C

j,k and βjk coincide.

Average partial effects of discrete variables (e.g. binary indicators) are obtained as

average changes in estimated probabilities. For a discrete variable h in group j

ÂPE
M

j,h =
1

NT

N∑
i=1

T∑
t=1

[
P̂M1
it,1j − P̂M0

it,1j

]
, M = U,C, (34)

where P̂U1
it,1j = P(yitj = 1|zli; γ̂), P̂C1

it,1j = P(yitj = 1|dit = j, zli; γ̂), l = 0, 1, zli =

(xlit, zit,1, z̄i), x1
it = (xit,1, . . . , xit,h−1, x

1
it,h, xit,h+1, . . . , xit,K), and x0

it =
(
xit,1, . . . , xit,h−1, x

0
it,h ,

xit,h+1, . . . , xit,K).

Note that (34) can also be used to obtain conditional APE for continuous variables.

One can simply consider a particular (e.g. one unit) increase in xk from a given value,

such as the sample mean of xk. Given the complexity of formulas in (32) and (33), using

(34) may be preferred. It appears to be especially attractive when obtaining APEC
j in a

model with multiple unordered groups.

In (34), estimators of APE are obtained by averaging over the distribution of all

covariates other then the one whose effect is being estimated. Alternatively, one can

obtain APE evaluated at particular values of other explanatory variables (z̃), such as

sample means or median values. Then, equation (34), for example, would become

ÃPE
M

j,h = P̃M1
1j − P̃M0

1j , M = U,C, (35)

where P̃U1
1j = P(yj = 1|z̃l; γ̂), P̃C1

1j = P(yj = 1|d = j, z̃l; γ̂), l = 0, 1, for some fixed values

z̃l = (x̃l, z̃1, ˜̄z), x̃1 = (x̃1, . . . , x̃h−1, x
1
h, x̃h+1, . . . , x̃K) and x̃0 = (x̃1, . . . , x̃h−1, x

0
h, x̃h+1, . . . , x̃K).

APE of continuous covariates are obtained similarly.
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4 Consistency and asymptotic normality

A necessary condition for the consistency of proposed estimators is that the true parameter

vector is identified. Let γ0 be the true parameter vector. Vector γ0 is identified if it

uniquely maximizes the expected value of the log likelihood function in the population.

For the likelihood function formulated in Section 3, this condition will fail if there is

perfect collinearity among covariates. On the other hand, the exclusion restriction is

not required. The parameters are identified even if covariates in the main and sorting

equations are the same. However, when zit = xit, identification relies on the nonlinearity

of the likelihood function, which makes the estimation less reliable. Hence, we follow the

literature and assume that zit contains at least one variable that is not in xit.

In addition to identification, several other conditions are needed for consistency.

Specifically, we make the following assumption:

Assumption 6 hello

(i) For each model, the corresponding assumptions in Section 2 hold, so that ft(·|z,γ)

is the true density function for each t.

(ii) For some γ0 ∈ Γ, γ0 is the unique solution to the maximization problem

max
γ∈Γ

E[li(γ)], li(γ) =
T∑
t=1

lit(γ). (36)

(iii) Γ is a compact set.

(iv) |l(Y, z,γ)| ≤ b(Y, z), all γ ∈ Γ, and E[b(Y, z)] <∞.

Assumptions (i) and (ii) state that the model is correctly specified, and γ0 is identified.

In addition to compactness, continuity of the log-likelihood function is required. Because

lit(γ) in Section 3 is continuous in γ, we do not state this assumption separately, as it
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holds if Assumption 6 (i) holds. Finally, assumption (iv) requires the expected value of

l(Y, z,γ) to be bounded across γ.

Theorem 1. If Assumption 6 holds, then γ̂
p→ γ0 as N →∞, T fixed.

Proof: For a proof, we follow Newey and McFadden (1994). Assumption 6 parts (iii)

and (iv) and the continuity of the likelihood function satisfy the conditions of Lemma 2.4 in

Newey and McFadden (1994) for a given t. Then, by Lemma 2.4 in Newey and McFadden

(1994), 1
N

∑N
i=1 lit(γ̂) uniformly converges in probability to E[lit(γ0)] for each t, so that

1
N

∑N
i=1

∑T
t=1 lit(γ̂) uniformly converges in probability to E[

∑T
t=1 lit(γ0)] = E[li(γ0)] for

a fixed T . Assumption 6 parts (ii) and (iii), the continuity of the likelihood function,

and uniform convergence satisfy the conditions of Theorem 2.1 in Newey and McFadden

(1994). By Theorem 2.1 in Newey and McFadden (1994), γ̂
p→ γ. �

To show asymptotic normality, we note that for the conditional density in Section 3,

li(γ) is twice continuously differentiable in the interior of Γ. Hence, we can define

S(Yi, zi,γ) = Si(γ) = ∇γli(γ)′ =
T∑
t=1

∇γlit(γ)′ =
T∑
t=1

Sit(γ), (37)

H(Yi, zi,γ) = Hi(γ) = ∇γSi(γ) = ∇2
γli(γ) =

T∑
t=1

Hit(γ).

Formulate an additional assumption:

Assumption 7 hello

(i) γ0 is in the interior of Γ.

(ii) Each element of H(Y, z,γ) is bounded in absolute value by a function b(Y, z), where

E[b(Y, z)] <∞.

(iii) E[H(Y, z,γ0)] is negative definite.

(iv) E[S(Y, z,γ0)] = 0.

20



(v) Each element of S(Y, z,γ0) has finite second moment.

Theorem 2. If Assumptions 6 and 7 hold, then

√
N(γ̂ − γ0)

d→ Normal(0,A−1
0 B0A

−1
0 ), (38)

where

A0 = −E [Hi(γ0)] = −
T∑
t=1

E [Hit(γ0)] , (39)

B0 = E [Si(γ0)Si(γ0)′] = E

[(
T∑
t=1

Sit(γ0)

)(
T∑
t=1

Sit(γ0)′

)]
.

Proof: By construction, estimator γ̂ solves the first order condition

N∑
i=1

Si(γ̂) = 0. (40)

Using the mean-value expansion about γ0, obtain

N∑
i=1

Si(γ̂) =
N∑
i=1

Si(γ0) +

(
N∑
i=1

Ḧi

)
(γ̂ − γ0), (41)

where Ḧi is evaluated at a different mean value. Using (40), we can set the left-hand side

in (41) to zero, multiply by
√
N and rearrange to obtain

√
N(γ̂ − γ0) = −

(
1

N

N∑
i=1

Ḧi

)−1 [
1√
N

N∑
i=1

Si(γ0)

]
. (42)

By Central Limit Theorem,

√
N(γ̂ − γ0)

d→ Normal(0,A−1
0 B0A

−1
0 ). (43)
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which completes the proof. �

The asymptotic variance of γ̂ can be estimated as

Âvar(γ̂) = Â−1B̂Â−1/N, (44)

Â = − 1

N

N∑
i=1

T∑
t=1

Hit(γ̂),

B̂ =
1

N

N∑
i=1

[(
T∑
t=1

Sit(γ̂)

)(
T∑
t=1

Sit(γ̂)′

)]
.

Regarding statistical inference, several null hypotheses may be of particular interest.

For example, to check whether sorting is random (so that the usual group-by-group esti-

mation is valid), one can test H0 : ρj = 0 or H0 : ρ1 = . . . = ρJ = 0 using a fully-robust

Wald test. Equality of the coefficients in two or more groups can be tested either for each

explanatory variable separately, or for the entire vector of parameters, θj.

5 Monte Carlo Simulations

To study the performance of proposed estimators in finite samples we conduct limited

Monte Carlo experiments. In addition to the methods discussed in Section 3, parameters

in each group were also estimated by pooled probit, which is a commonly used method

in applied research. In every regression, the list of covariates was augmented by variable

time means, z̄i. Hence, the focus is on assessing the benefits of accounting for nonrandom

sorting.

Data were simulated for a two-group model, a model with three ordered groups, and

the one with three unordered groups. Explanatory variables are (1, xit, x̄i, z̄i) in the main

equations, and (1, xit, zit, x̄i, z̄i) in the sorting equations. The covariates are generated as

xit = bi1 + ζit1, (45)
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zit = bi2 + ζit2,

x̄i =
T∑
t=1

xit, z̄i =
T∑
t=1

zit, (46)

where bij are independent across i, bij ∼ Normal(0, σ2
b ), j = 1, 2, and Corr(bi1, bi2) = 0.25.

Correspondingly, zetaitj are independent across i and t, ζitj ∼ Normal(0, σ2
ζ ), j = 1, 2,

σ2
b + σ2

ζ = 1, and
σ2
b

σ2
b+σ2

ζ
= 0.5.

The coefficients on time means are set at ξcj = (−0.3,−0.3)′, j = 1, 2, ξb = (0.3, 0.3)′

in all models. However, other population parameters vary by the model to ensure that

cross-section units are approximately equally distributed across groups. In a two-group

model, yitj and dit are generated as in (8), using β1 = (1,−1)′, β2 = (0.5, 1)′, δ =

(0.1, 0.5, 1)′. The response variables for the model with three ordered groups are created

using β1 = (−0.5,−1)′, β2 = (0.2,−2)′, β3 = (−0.2, 2)′, δ = (0.5, 0.5, 1)′, and cut points

C1 = −0.3, C2 = 1.2. In the model with three unordered groups, the parameters are set

at β1 = (−0.5,−1)′, β2 = (1,−2)′, β3 = (1, 2)′, δ2 = (−0.5, 0.5, 1)′, δ2 = (−0.5,−0.5, 1.2)′,

and j = 1 is a base group.

For each j, error terms were generated as ηitj = acij + uitj, εit = abi + vit, where

acij ∼ Normal(0, σ2
a), abi ∼ Normal(0, σ2

a), uitj ∼ Normal(0, σ2
u), vit ∼ Normal(0, σ2

v),

σ2
a + σ2

u = σ2
a + σ2

v = 1, σ2
a

σ2
a+σ2

u
= σ2

a

σ2
a+σ2

v
= 0.5, and Corr(acij, abi) = Corr(uitj, vit) = ρj. In

the two-group model, data are simulated using ρ1 = −0.5, ρ2 = 0.5, while in both three-

group models the correlations were ρ1 = 0.5, ρ2 = 0.5, ρ3 = −0.5. We also generated data

for ρj = 0, ∀j. Simulations were done for T = 3, N = 300, 500, and 1, 000, using 1, 000

replications.

Simulation results for N = 300 are presented in Tables 1-4. In all tables, PMLE is the

partial MLE estimator discussed in Section 3. As seen in Table 1, joint PMLE estimators

have slightly smaller biases than probit in a two-group model when ρj = 0. However,

probit estimators have smaller average standard errors and, correspondingly, smaller root

mean-square errors (RMSE). When ρj are different from zero, probit estimators have
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sizable biases, which is not the case for joint PMLE. As a result, RMSE tend to be larger

for probit.

For the model with three ordered groups (Table 2), results are similar. Joint PMLE

outperforms probit in terms of smaller biases and RMSE when ρj 6= 0, although it has

larger standard errors, on average. In the model with three unordered groups (Table 3),

both joint PMLE and PMLE for the second (“best alternative”) model in Section 2.4

have smaller biases than probit when error correlations are different form zero. A notable

exception is a relatively poor performance of the “best alternative” PMLE for estimating

parameters in group j = 1 (noticeably larger biases and average standard errors). Thus,

it appears that the “best alternative” PMLE is less reliable than the joint PMLE.

Table 4 displays simulation outcomes for the parameters in the sorting equations in all

three models. All results are obtained using the joint PMLE method. In all cases biases

are very small. Average standard errors and RMSE of the estimators of slope parameters

are also small. The estimators of the correlation coefficients tend to have larger standard

errors suggesting that it is hard to estimate ρj with a high degree of precision.

Simulation results for APEU are presented in Table 5. The bias is computed as a

difference between the APE evaluated at the estimated coefficients and APE evaluated

at true θ. Standard errors are obtained using the delta method. Similar to the findings

for estimated coefficients, probit is the preferred estimation method when errors are not

correlated, as it has lower standard errors and small biases. However, when the error

correlation is present, the joint PMLE estimator has the smallest computed bias and

reasonable standard errors. Table 6 contains simulation results for APEC . In the Table,

the bias tends to be small. However, standard errors are noticeably higher than for APEU ,

especially in the case of three unordered groups. The increase in standard errors is not

surprising, given that correlation coefficients cannot be estimated precisely.

To study the properties of the estimators when the normality assumption fails, we

consider an alternative data generating process, where error uitj has zero-mean chi-square
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distribution with three degrees of freedom. The variance of uitj is set equal to that in

the normal distribution case. The results are presented in Tables 7-12. As seen from

the Tables, the computed biases are larger for all estimators of model parameters when

the normality assumption is violated. However, the joint PMLE still has less bias than

a single-equation probit when errors are correlated, and its bias is reasonably small.

Similarly, misspecification of the likelihood function leads to an increase in the bias of

APEU and APEC estimators, but the increase is minor.

Simulations were also preformed for N = 500 and N = 1, 000. The corresponding

results are reported in the Online Appendix. As expected, computed biases, average

standard errors, and RMSE tend to decrease as N grows. Otherwise, the results are

qualitatively unchanged.

6 Empirical Application

To illustrate the presented theoretical argument with an empirical example, we study

gender differences in job satisfaction in different types of occupations. Using Blau and

Kahn (2017) as our guide, we consider three types of jobs: (i) “male” professional occu-

pations (professional jobs excluding nurses and K-12 and other non-college teachers), (ii)

“female” professional occupations (nurses, K-12 teachers, and other non-college teachers),

and (iii) other occupations. The effect of gender may vary by occupation. Moreover, self-

selection into a particular occupation type is likely nonrandom and depends on personal

preferences. The unobserved factors that influence occupation choice may also affect job

satisfaction, which implies that the errors in the main and sorting equations may be cor-

related, so that the methodology presented in this paper should be helpful. Because there

are three unordered groups, we use estimators presented in Section 2.4.

To perform the analysis, we employ data from the National Longitudinal Survey of

Youth, 1979 (NLSY79). The initial sample is representative of individuals born between
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1957-1964. We utilize 1987-1992 waves of the survey that are characterized by a rela-

tively high response rate (90% or higher). Respondents in supplemental samples, military

samples, self-employed, and agricultural workers are excluded. Limiting the data to re-

spondents who participated and were employed in all six waves of the survey results in

a balanced panel of 2,874 workers. Observations with missing information on any of the

variables used in the analysis and individuals younger than 25 years old were dropped.

The final sample includes 2,729 workers, and a total of 14,750 person-year observations.

About 22.4% of the respondents transitioned from one occupation type to another at least

once during the considered period.

The dependent variable in the main equation is an indicator equal to one if the

worker is very satisfied with his or her job, and zero otherwise. Explanatory variables

include female indicator, age, race and ethnicity indicators, college education indicator,

and graduate education indicator. To control for individual differences in cognitive ability

we include the Armed Forces Qualification Test (AFQT) score, which was administered

in 1979. We also include two personality variables, locus of control and self-esteem, which

are from years 1979 and 1980, respectively. The self-esteem measure (Rosenberg, 1965) is

used to assess the degree of approval or disapproval toward oneself, while locus of control

(Rotter, 1966) is used to evaluate how strongly the respondent believes he/she can control

own life outcomes (internal locus of control) rather than outcomes being determined by

fate or luck (external locus of control). In the data, the value of this variable is larger if

the person has a more external locus of control (smaller for internal). The AFQT score

and personality measures were standardized to have a zero mean and unit variance in

the sample. Vector z̄i includes the individual time means of time-varying covariates –

college and graduate education indicators. The time mean of age was omitted from z̄i to

avoid perfect collinearity with year dummies, as age increases by one every year for all

respondents. Year indicators are included in all equations.

The determinants of the occupation choice include all variables from the job satisfac-
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tion equation and parental occupation at the time when the respondent was 14 years old.

Specifically, we include an indicator for father (father figure) working in a “male” profes-

sional occupation, an indicator for father (father figure) working in a “female” professional

occupation, and similar indicators for the mother (mother figure). Parents employed in

other occupations and non-working parents comprise the reference group.4

Summary statistics are presented in Table 13. As seen in the Table, the percent of

workers who are very satisfied with their job is the highest among those in “female” pro-

fessional occupations. As expected, the proportion of females is the highest among those

who have a “female” professional job and lowest in “male” professional occupations. The

percent of minorities is the largest in “other occupations” group. Workers in “male” and

“female” professional occupations tend to have more education, higher cognitive ability,

higher self-esteem, and a more internal locus of control. Respondents in “female” profes-

sional jobs are more likely to have a mother (mother figure) who worked in a “female”

professional occupation at the time when the respondent was 14 years old. Similarly,

those in “male” professional occupations are more likely to have a father (father figure)

who had a “male” professional job.

To obtain main results, the job satisfaction equation was first estimated separately for

each occupation type by pooled probit. Subsequently, the same equations were estimated

using the two methods described in Section 2.4. Estimated average partial effects and

standard errors are presented in Table 14. The first three columns display estimated

unconditional APE. As expected, results vary by estimation method. The differences

are particularly large if looking at “female” professional occupations. For example, the

estimated APEU of the female indicator is much larger for the two PMLE methods than

for probit. After accounting for the nonrandom occupation choice using joint PMLE

(third column in Table 14), the predicted probability of being very satisfied is about 10

4When indicators for working parents were included, they were never significant and caused multi-
collinearity problems. Therefore, these variables were excluded from the model.
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percentage points higher for women, as compared to men, which is more than double of

the probit estimate. On the other hand, the estimated racial difference for this occupation

type becomes substantially smaller after accounting for self selection. The dissimilarities

between probit and PMLE are not surprising, given that the estimated error correlation for

“female” professional occupations is very large (0.952) and highly statistically significant.

The differences between PMLE and probit estimates of APEU for “male” professional

occupations are much smaller, while they are almost non-existent for “other occupations.”

These similarities can be explained by smaller error correlations, which are insignificant

in both cases. Notably, estimation results reveal no gender difference in job satisfaction

if working in a “male” professional occupation, but a moderate (four percentage points)

significant positive effect of being a woman for “other occupations.” Thus, there is sub-

stantial heterogeneity in the gender effect by occupation.

The last column in Table 14 reports the APE conditional on being in a given occupa-

tion type. The discrepancies between APEU and APEC are rather minor for the “male”

professional and “other” occupations, which is as expected. However, the corresponding

differences for “female” professional jobs (where the error correlation is very high) are

sizable. Among individuals who choose to work in such occupations women are only

4.5 percentage points more likely to be very satisfied with their jobs than men, which is

roughly half of the effect under the random occupation assignment. Moreover, APEC of

the female indicator is statistically insignificant, indicating no systematic gender differ-

ences in job satisfaction for workers in this group. This finding is likely due to the positive

error correlation. Both male and female workers who self-select into “female” professional

occupations tend to be happier with their jobs, which reduced gender differences in job

satisfaction.

Estimated average partial effects in the occupation equations are displayed in Table

15. “Male” professional jobs is the base group. Not surprisingly, women are more likely

to be in “ female” professional occupations than in the other two occupation types, while
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higher cognitive ability is positively associated with the probability of being in “male”

professional jobs. Importantly, parental occupation at age 14 influences the person’s

occupation choice later in life. Mother having a “female” professional job has a positive

effect on the individual’s probability of being in a “female” professional occupation. On

the other hand, the probability that the person is in a “male” professional occupation is

higher if their father had a “male” or “female” professional job. The effects are statistically

significant at the 5% significance level or better.

Going back to cross-occupation comparisons of gender differences in job satisfaction,

the obtained results are reasonable. Women often choose “female” professional jobs be-

cause such jobs tend to have characteristics valued by women, e.g. social interaction. On

the other hand, “male” professional jobs appear to be least likely to offer such intrinsic

benefits, which leads to the lower job satisfaction among women and reduced probability

of them choosing these jobs.

7 Conclusion

This paper discusses the methodology for estimating heterogeneous effects in static bi-

nary response panel data models. In addition to a two-group case, we consider estimat-

ing parameters for multiple heterogeneous groups, which may be ordered or unordered.

Under the formulated assumptions, the proposed methods produce consistent and
√
N -

asymptotically normal estimators of heterogeneous parameters. Simulations show that

the methods perform well in finite samples. The computed biases remain small when the

correlation between errors in the main and sorting equations increases. The RMSE are

also smaller than probit RMSE when error correlations are different from zero.

As an empirical application, we use NLSY79 data to estimate heterogeneous gender

differences in job satisfaction by occupation type. We find that accounting for nonran-

dom occupation choice produces different results as compared to simple probit estimation
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when error correlation is high. Once the non-random self-selection is accounted for, the

predicted gender difference in job satisfaction is about 10 percentage points in “female”

professional occupations, where women tend to feel happier than men. In contrast, there

is no gender difference for “male” professional occupations.

The proposed methods can be used for estimating heterogeneous effects using cross-

section data. It would correspond to a special case with T = 1. Obviously, the Mundlak-

Chamberlain model of the unobserved effect cannot be used in such a setting. Instead,

one would need to include a sufficient set of controls to avoid inconsistencies resulting

from an omitted variable problem. Possible venues for future research include considering

the estimation of heterogeneous effects in dynamic binary response panel data models

with an arbitrary number of groups.
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Jäckle, R., and O. Himmler, 2010, Health and Wages: Panel Data Estimates Considering

Selection and Endogeneity. Journal of Human Resources 45(2), 364-406.

Kyriazidou, E., 1997, Estimation of a panel data sample selection model. Econometrica

65, 1335-1364.

31



Lee, L.F., 1978, Unionism and Wage Rates: A Simultaneous Equation Model with Qual-

itative and Limited Dependent Variables. International Economic Review 19, 415-

433.

Maddala G.S. and F. Nelson, 1975, Switching Regression Models with Exogenous and

Endogenous Switching. Proceedings of the American Statistical Association (Busi-

ness and Economics Section), 423-426.

Maddala, G.S., 1983, Limited Dependent Variable and Qualitative Variables in Econo-

metrics. Cambridge, U.K.: Cambridge University Press.

Manski, C., D. Sandefur, S. McLanahan, and D. Powers, 1992, Alternative Estimates of

Family Structure During Adolescence on High School Graduation, Journal of the

American Statistical Association 87, 25-37.

Mundlak, Y., 1978, On the Pooling of Time Series and Cross Section Data. Econometrica

46(1), 69-85.

Newey, W.K., 2009, Two-step series estimation of sample selection models. Econometrics

Journal 12, S217-S229.

Newey, W.K. and D. McFadden, 1994, Large Sample Estimation and Hypothesis Testing,

in Handbook of Econometrics, Volume 4, ed. R.F.Engle and D.McFadden. Amster-

dam: North Holland, 2111-2245.

Semykina, A., 2018, Self-Employment among Women: Do Children Matter More Than

We Previously Thought? Journal of Applied Econometrics 33, 416-434.

Semykina, A. and J.M. Wooldridge, 2018, Binary Response Panel Data Models with

Sample Selection and Self Selection. Journal of Applied Econometrics 33, 179-197.

Sloane, P. and H. Williams, 2000, Job satisfaction, comparison earnings and gender.

Labour 14, 473-501.

32



Vella, F., 1988, Generating Conditional Expectations from Models with Selectivity Bias.

Economics Letters 28, 97-103.

Wooldridge, J.M., 1995, Selection Corrections for Panel Data Models under Conditional

Mean Independence Assumptions. Journal of Econometrics 68, 115–132.

33



Table 1: Simulation Results for J = 2 (T = 3, N = 300)

ρ1 = ρ2 = 0 ρ1 = −0.5, ρ2 = 0.5
—————————————– —————————————–
Bias Avg. Std. Err. RMSE Bias Avg. Std. Err. RMSE

β01

Probit 0.018 0.116 0.114 -0.274 0.105 0.295
Joint PMLE 0.003 0.207 0.220 -0.012 0.158 0.163

β11

Probit -0.020 0.131 0.132 0.019 0.127 0.134
Joint PMLE -0.005 0.136 0.147 -0.008 0.123 0.128

β02

Probit 0.006 0.102 0.098 -0.365 0.098 0.379
Joint PMLE -0.005 0.209 0.219 -0.011 0.172 0.177

β12

Probit 0.020 0.127 0.129 -0.030 0.124 0.129
Joint PMLE 0.005 0.133 0.147 0.002 0.120 0.120
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Table 2: Simulation Results for J = 3, Ordered Groups (T = 3, N = 300)

ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5
—————————————— ———————————————
Bias Avg. Std. Err. RMSE Bias Avg. Std. Err. RMSE

β01

Probit -0.021 0.147 0.155 -0.615 0.170 0.641
Joint PMLE -0.005 0.386 0.335 -0.040 0.422 0.361

β11

Probit -0.027 0.166 0.171 -0.201 0.180 0.278
Joint PMLE -0.010 0.191 0.176 -0.034 0.229 0.208

β02

Probit 0.011 0.114 0.118 0.008 0.121 0.126
Joint PMLE 0.008 0.116 0.117 0.003 0.115 0.115

β12

Probit -0.063 0.263 0.287 -0.457 0.309 0.569
Joint PMLE -0.024 0.302 0.290 -0.048 0.420 0.379

β03

Probit -0.004 0.151 0.157 -0.571 0.167 0.598
Joint PMLE 0.001 0.416 0.361 -0.038 0.373 0.370

β13

Probit 0.054 0.241 0.263 0.269 0.263 0.393
Joint PMLE 0.012 0.283 0.267 0.039 0.327 0.324
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Table 3: Simulation Results for J = 3, Unordered Groups (T = 3, N = 300)

ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5
—————————————— ———————————————
Bias Avg. Std. Err. RMSE Bias Avg. Std. Err. RMSE

β01

Probit -0.015 0.106 0.107 0.348 0.099 0.362
Best alt. PMLE 0.100 0.509 0.717 0.215 0.466 0.736
Joint PMLE 0.045 0.418 0.437 0.060 0.386 0.386

β11

Probit -0.026 0.165 0.175 -0.074 0.166 0.182
Best alt. PMLE 0.161 0.235 0.268 0.139 0.245 0.258
Joint PMLE 0.042 0.192 0.181 0.028 0.205 0.179

β02

Probit 0.044 0.182 0.191 0.479 0.211 0.531
Best alt. PMLE 0.010 0.379 0.384 0.034 0.433 0.432
Joint PMLE 0.009 0.370 0.375 0.042 0.416 0.421

β12

Probit -0.087 0.263 0.292 -0.224 0.280 0.369
Best alt. PMLE -0.032 0.284 0.283 -0.042 0.320 0.320
Joint PMLE -0.034 0.282 0.283 -0.048 0.315 0.317

β03

Probit 0.033 0.168 0.180 -0.324 0.153 0.363
Best alt. PMLE 0.002 0.340 0.335 0.010 0.280 0.282
Joint PMLE 0.001 0.331 0.327 0.003 0.273 0.280

β13

Probit 0.070 0.260 0.300 0.070 0.259 0.284
Best alt. PMLE 0.028 0.273 0.298 0.045 0.260 0.272
Joint PMLE 0.029 0.272 0.297 0.044 0.261 0.271
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Table 4: Simulation Results for Parameters in Sorting Equations (T = 3, N = 300)

Bias Avg. Std. Err. RMSE Bias Avg. Std. Err. RMSE

J = 2
ρ1 = ρ2 = 0 ρ1 = −0.5, ρ2 = 0.5

δ0 0.004 0.065 0.066 0.002 0.066 0.067
δ1 0.004 0.086 0.093 0.006 0.086 0.087
δ2 0.005 0.098 0.115 0.008 0.099 0.096
ρ1 -0.006 0.276 0.290 0.027 0.234 0.249
ρ2 -0.001 0.246 0.258 -0.014 0.196 0.210

J = 3, ordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

δ1 0.001 0.070 0.063 0.001 0.072 0.065
δ2 0.009 0.084 0.076 0.007 0.088 0.077
ρ1 0.007 0.322 0.284 -0.020 0.283 0.244
ρ2 0.003 0.258 0.232 -0.002 0.215 0.191
ρ3 -0.001 0.368 0.317 0.026 0.275 0.276

J = 3, unordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

δ02 -0.007 0.102 0.106 -0.009 0.102 0.099
δ12 0.004 0.120 0.124 0.007 0.120 0.118
δ22 0.007 0.139 0.139 0.016 0.140 0.139
δ03 -0.007 0.102 0.102 -0.002 0.102 0.104
δ13 -0.008 0.120 0.117 -0.007 0.120 0.116
δ23 -0.011 0.139 0.137 -0.017 0.140 0.139
ρ1 -0.032 0.550 0.581 -0.079 0.531 0.530
ρ2 0.011 0.417 0.444 -0.020 0.382 0.389
ρ3 0.016 0.379 0.377 0.017 0.339 0.353

Estimation was performed using joint PMLE estimator.
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Table 5: Simulation Results for APEU (T = 3, N = 300)

Bias Avg. Std. Err. Bias Avg. Std. Err.

J = 2
ρ1 = ρ2 = 0 ρ1 = −0.5, ρ2 = 0.5

APEU
1 : Probit -0.0005 0.0240 -0.0190 0.0244

APEU
1 : Joint PMLE 0.0001 0.0301 0.0003 0.0312

APEU
2 : Probit -0.0014 0.0254 0.0096 0.0227

APEU
2 : Joint PMLE -0.0056 0.0316 -0.0013 0.0285

J = 3, ordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

APEU
1 : Probit 0.0010 0.0309 0.0244 0.0302

APEU
1 : Joint PMLE 0.0054 0.0357 0.0045 0.0370

APEU
2 , Probit -0.0005 0.0424 0.0096 0.0436

APEU
2 : Joint PMLE 0.0008 0.0365 0.0016 0.0448

APEU
3 : Probit -0.0001 0.0492 -0.0183 0.0597

APEU
3 : Joint PMLE -0.0078 0.0592 -0.0046 0.0850

J = 3, unordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

APEU
1 : Probit 0.0012 0.0305 -0.0212 0.0310

APEU
1 : Best alt. PMLE 0.0445 0.0386 0.0296 0.0419

APEU
1 : Joint PMLE 0.0139 0.0478 0.0085 0.0461

APEU
2 : Probit 0.0000 0.0468 0.0200 0.0481

APEU
2 : Best alt. PMLE 0.0035 0.0422 0.0043 0.0476

APEU
2 : Joint PMLE 0.0043 0.0509 0.0041 0.0473

APEU
3 : Probit -0.0008 0.0352 0.0206 0.0361

APEU
3 : Best alt. PMLE -0.0056 0.0411 -0.0059 0.0462

APEU
3 : Joint PMLEv -0.0057 0.0501 -0.0061 0.0460
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Table 6: Simulation Results for APEC (T = 3, N = 300)

Bias Avg. Std. Err. Bias Avg. Std. Err.

J = 2
ρ1 = ρ2 = 0 ρ1 = −0.5, ρ2 = 0.5

APEC
1 : Joint PMLE -0.0010 0.0338 0.0011 0.0360

APEC
2 : Joint PMLE -0.0020 0.0353 0.0011 0.0255

J = 3, ordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

APEC
1 : Joint PMLE 0.0012 0.0488 -0.0020 0.0295

APEC
2 : Joint PMLE -0.0002 0.0470 -0.0005 0.0329

APEC
3 : Joint PMLE -0.0008 0.0599 0.0022 0.1175

J = 3, unordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

APEC
1 : Joint PMLE 0.0470 0.1370 0.0653 0.0739

APEC
2 : Joint PMLE -0.0002 0.1565 -0.0044 0.0765

APEC
3 : Joint PMLE 0.0138 0.0515 0.0041 0.1050
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Table 7: Simulation Results for Chi-Square Error Distribution, J = 2 (T = 3, N = 300)

ρ1 = ρ2 = 0 ρ1 = −0.5, ρ2 = 0.5
—————————————– —————————————–
Bias Avg. Std. Err. RMSE Bias Avg. Std. Err. RMSE

β01

Probit 0.057 0.120 0.138 -0.274 0.107 0.293
Joint PMLE 0.016 0.233 0.237 0.001 0.161 0.153

β11

Probit -0.092 0.137 0.167 -0.017 0.130 0.133
Joint PMLE -0.070 0.146 0.162 -0.044 0.126 0.136

β02

Probit -0.002 0.104 0.108 -0.398 0.099 0.410
Joint PMLE -0.011 0.215 0.217 -0.036 0.168 0.172

β12

Probit 0.105 0.133 0.177 0.014 0.128 0.132
Joint PMLE 0.092 0.140 0.174 0.044 0.123 0.133
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Table 8: Simulation Results for Chi-Square Error Distribution, J = 3, Ordered Groups
(T = 3, N = 300)

ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5
—————————————— ———————————————
Bias Avg. Std. Err. RMSE Bias Avg. Std. Err. RMSE

β01

Probit -0.077 0.154 0.174 -0.664 0.179 0.690
Joint PMLE -0.093 0.898 0.318 -0.199 0.566 0.413

β11

Probit -0.083 0.172 0.198 -0.217 0.185 0.294
Joint PMLE -0.074 0.503 0.199 -0.086 0.307 0.230

β02

Probit -0.002 0.113 0.117 0.008 0.120 0.124
Joint PMLE -0.005 0.132 0.115 0.006 0.140 0.115

β12

Probit -0.108 0.276 0.312 -0.505 0.322 0.615
Joint PMLE -0.068 0.367 0.309 -0.126 0.507 0.410

β03

Probit -0.032 0.157 0.171 -0.592 0.174 0.618
Joint PMLE -0.051 0.450 0.336 -0.163 0.421 0.384

β13

Probit 0.145 0.260 0.313 0.327 0.276 0.447
Joint PMLE 0.114 0.568 0.301 0.149 0.365 0.354
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Table 9: Simulation Results for Chi-Square Error Distribution, J = 3, Unordered Groups
(T = 3, N = 300)

ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5
—————————————— ———————————————
Bias Avg. Std. Err. RMSE Bias Avg. Std. Err. RMSE

β01

Probit -0.051 0.109 0.122 0.327 0.101 0.342
Best alt. PMLE -0.038 0.456 0.646 0.146 0.433 0.691
Joint PMLE -0.100 0.392 0.436 -0.012 0.360 0.406

β11

Probit -0.038 0.168 0.179 -0.107 0.170 0.205
Best alt. PMLE 0.141 0.215 0.270 0.119 0.228 0.274
Joint PMLE 0.038 0.195 0.191 0.023 0.192 0.199

β02

Probit 0.037 0.179 0.191 0.481 0.208 0.529
Best alt. PMLE -0.019 0.411 0.420 -0.018 0.449 0.469
Joint PMLE -0.024 0.390 0.436 -0.029 0.410 0.482

β12

Probit -0.088 0.272 0.302 -0.234 0.287 0.389
Best alt. PMLE -0.021 0.299 0.301 -0.021 0.330 0.358
Joint PMLE -0.009 0.293 0.318 -0.012 0.311 0.360

β03

Probit 0.047 0.167 0.179 -0.320 0.152 0.358
Best alt. PMLE 0.018 0.351 0.369 0.002 0.271 0.280
Joint PMLE 0.008 0.338 0.374 0.003 0.262 0.282

β13

Probit 0.141 0.273 0.323 0.114 0.269 0.303
Best alt. PMLE 0.089 0.292 0.309 0.086 0.269 0.283
Joint PMLE 0.083 0.286 0.315 0.076 0.265 0.289
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Table 10: Simulation Results for Parameters in Sorting Equations, Chi-Square Error
Distribution (T = 3, N = 300)

Bias Avg. Std. Err. RMSE Bias Avg. Std. Err. RMSE
J = 2

ρ1 = ρ2 = 0 ρ1 = −0.5, ρ2 = 0.5
δ0 -0.002 0.065 0.065 0.001 0.065 0.067
δ1 0.006 0.086 0.085 0.005 0.085 0.088
δ2 0.011 0.099 0.100 0.013 0.098 0.101
ρ1 0.032 0.308 0.327 0.007 0.238 0.229
ρ2 -0.003 0.253 0.258 -0.005 0.188 0.196

J = 3, ordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

δ1 0.005 0.082 0.066 0.006 0.106 0.066
δ2 0.006 0.127 0.077 0.012 0.137 0.074
ρ1 -0.023 0.667 0.257 -0.104 0.402 0.272
ρ2 0.010 0.335 0.227 -0.034 0.350 0.204
ρ3 0.021 0.459 0.283 0.106 0.353 0.284

J = 3, unordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

δ02 -0.002 0.100 0.114 0.006 0.091 0.117
δ12 -0.003 0.120 0.121 0.000 0.108 0.123
δ22 0.002 0.135 0.150 -0.009 0.122 0.151
δ03 -0.005 0.100 0.107 0.007 0.091 0.112
δ13 -0.008 0.120 0.116 0.004 0.108 0.119
δ23 -0.006 0.135 0.146 -0.002 0.122 0.146
ρ1 0.128 0.539 0.611 0.000 0.486 0.564
ρ2 0.029 0.439 0.503 0.038 0.371 0.479
ρ3 0.015 0.386 0.435 0.021 0.323 0.372

Estimation was performed using joint PMLE estimator.
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Table 11: Simulation Results for Chi-Square Error Distribution, APEU (T = 3, N = 300)

Bias Avg. Std. Err. Bias Avg. Std. Err.

J = 2
ρ1 = ρ2 = 0 ρ1 = −0.5, ρ2 = 0.5

APEU
1 : Probit -0.0059 0.0246 -0.0253 0.0248

APEU
1 : Joint PMLE -0.0063 0.0309 -0.0045 0.0317

APEU
2 : Probit 0.0160 0.0266 0.0168 0.0230

APEU
2 : Joint PMLE 0.0113 0.0326 0.0066 0.0289

J = 3, ordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

APEU
1 : Probit -0.0026 0.0312 0.0268 0.0308

APEU
1 : Joint PMLE 0.0013 0.0366 0.0086 0.0379

APEU
2 : Probit -0.0004 0.0443 0.0085 0.0449

APEU
2 : Joint PMLE 0.0007 0.0911 0.0009 0.0550

APEU
3 : Probit 0.0016 0.0504 -0.0200 0.0686

APEU
3 : Joint PMLE -0.0044 0.1029 -0.0069 0.0625

J = 3, unordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

APEU
1 : Probit 0.0004 0.0312 -0.0230 0.0312

APEU
1 : Best alt. PMLE 0.0383 0.0399 0.0315 0.0426

APEU
1 : Joint PMLE 0.0182 0.0496 0.0125 0.0478

APEU
2 : Probit -0.0005 0.0422 0.0193 0.0447

APEU
2 : Best alt. PMLE 0.0016 0.0447 0.0009 0.0493

APEU
2 : Joint PMLE 0.0029 0.0535 0.0009 0.0491

APEU
3 : Probit 0.0031 0.0369 0.0237 0.0360

APEU
3 : Best alt. PMLE -0.0013 0.0437 0.0004 0.0464

APEU
3 : Joint PMLE -0.0015 0.0525 -0.0007 0.0484
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Table 12: Simulation Results for Chi-Square Error Distribution, APEC (T = 3, N = 300)

Bias Avg. Std. Err. Bias Avg. Std. Err.

J = 2
ρ1 = ρ2 = 0 ρ1 = −0.5, ρ2 = 0.5

APEC
1 : Joint PMLE -0.0058 0.0357 -0.0059 0.0398

APEC
2 : Joint PMLE 0.0153 0.0478 0.0075 0.0249

J = 3, ordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

APEC
1 : Joint PMLE -0.0028 0.0733 -0.0010 0.0393

APEC
2 : Joint PMLE -0.0002 0.0487 -0.0012 0.0393

APEC
3 : Joint PMLE 0.0012 0.0933 0.0033 0.0797

J = 3, unordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

APEC
1 : Joint PMLE 0.0535 0.0515 0.0780 0.0786

APEC
2 : Joint PMLE 0.0000 0.7188 -0.0042 0.3031

APEC
3 : Joint PMLE 0.0161 0.0530 0.0078 0.1078
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Table 13: Summary Statistics

Variable “Male” prof. “Female” prof. Other
occupations occupations occupations

Very satisfied with the job (%) 51.23 64.25 42.16
Female (%) 44.22 85.38 48.21
Black (%) 5.70 8.63 12.05
Hispanic (%) 5.39 4.75 6.50
Age 28.98 29.26 28.83

(2.46) (2.40) (2.48)
College education (%) 54.70 59.88 38.62
Graduate education (%) 34.36 32.13 5.72
AFQT score 0.73 0.49 -0.10

(0.84) (0.82) (0.98)
Self-esteem 0.31 0.14 -0.04

(0.96) (0.95) (1.00)
Locus of control -0.20 -0.27 0.02

(1.05) (1.03) (0.99)
Mother in “male” prof. occupation (%) 5.24 4.50 1.79
Mother in “female” prof. occupation (%) 10.48 14.88 3.83
Father in “male” prof. occupation (%) 19.26 10.25 6.64
Father in “female” prof. occupation (%) 3.16 2.75 1.17

Number of observations 1,298 800 12,652

46



Table 14: Estimated Partial Effects for Probability of Being Very Satisfied with the Job

Probit Best alt. PMLE Joint PMLE Joint PMLE
APEU APEU APEU APEC

“Male” professional occupations

Female -0.018 -0.026 0.007 -0.037
(0.038) (0.027) (0.120) (0.080)

Black 0.047 0.034 0.038 0.030
(0.083) (0.056) (0.056) (0.032)

Hispanic 0.106 0.104* 0.064 0.054
(0.090) (0.059) (0.103) (0.052)

Age -0.009 -0.009*** -0.005 -0.006
(0.009) (0.003) (0.020) (0.017)

College education 0.382 0.356 0.288 0.244
(0.338) (0.305) (0.294) (0.164)

Graduate education 0.348 0.310 0.271 0.227
(0.359) (0.317) (0.296) (0.177)

AFQT score -0.025 -0.001 -0.040 -0.017
(0.027) (0.036) (0.101) (0.060)

Self-esteem 0.037* 0.033** 0.024 0.021
(0.020) (0.013) (0.038) (0.022)

Locus of control 0.003 0.006 -0.003 0.002
(0.020) (0.013) (0.029) (0.017)

ρ 0.290 -0.469
(0.443) (2.449)

“Female” professional occupations

Female 0.042 0.072*** 0.097** 0.045
(0.072) (0.018) (0.047) (0.098)

Black -0.161* -0.031*** -0.049** -0.173
(0.093) (0.010) (0.020) (14.367)

Hispanic -0.039 -0.007 -0.014 -0.026
(0.076) (0.016) (0.025) (1.296)

Age -0.002 0.003 0.003 -0.003
(0.013) (0.004) (0.007) (0.014)

College education 0.003 0.008 0.017 0.033
(0.301) (0.069) (0.102) (0.267)

Graduate education -0.150 -0.011 -0.016 -0.117
(0.327) (0.058) (0.083) (0.301)

AFQT score -0.042 -0.009* -0.017 -0.050
(0.040) (0.005) (0.012) (0.036)

Self-esteem 0.015 0.000 0.001 0.017
(0.027) (0.004) (0.009) (0.026)

Locus of control -0.062** -0.015*** -0.024** -0.070**
(0.026) (0.004) (0.011) (0.029)

ρ 0.831*** 0.952***
(0.110) (0.289)

Standard errors in parentheses; *** significant at the 1% level, ** at the 5% level, * at the 10% level.

All equations include year indicators and individual time means for college and graduate education.
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Table 14. Continued.

Probit Best alt. PMLE Joint PMLE Joint PMLE
APEU APEU APEU APEC

Other occupations
Female 0.036*** 0.038*** 0.040** 0.026

(0.014) (0.011) (0.017) (0.017)
Black -0.051** -0.051*** -0.052** -0.048**

(0.023) (0.015) (0.023) (0.023)
Hispanic 0.040 0.040** 0.041 0.033

(0.029) (0.018) (0.029) (0.030)
Age -0.002 -0.002 -0.002 -0.002

(0.003) (0.002) (0.003) (0.003)
College education -0.029 -0.028 -0.027 -0.033

(0.049) (0.054) (0.050) (0.051)
Graduate education 0.008 0.009 0.011 0.004

(0.070) (0.084) (0.071) (0.072)
AFQT score -0.003 -0.001 0.000 -0.009

(0.009) (0.007) (0.011) (0.011)
Self-esteem 0.049*** 0.049*** 0.049*** 0.047***

(0.007) (0.005) (0.008) (0.008)
Locus of control -0.007 -0.007 -0.007 -0.008

(0.007) (0.005) (0.007) (0.008)
ρ -0.078 -0.185

(0.251) (0.432)
Standard errors in parentheses; *** significant at the 1% level, ** at the 5% level, * at the 10% level.

All equations include year indicators and individual time means for college and graduate education.
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Table 15: Estimated Average Partial Effects in Occupation Equations

“Female” professional Other
occupations occupations

Female 0.381*** 0.001
(0.046) (0.007)

Black -0.027 0.002
(0.059) (0.013)

Hispanic -0.072 -0.023
(0.069) (0.018)

Age 0.021* 0.001
(0.012) (0.001)

College education -0.026 -0.020
(0.094) (0.026)

Graduate education 0.029 -0.013
(0.115) (0.026)

AFQT score -0.082*** -0.029***
(0.022) (0.006)

Self-esteem -0.024 -0.003
(0.017) (0.003)

Locus of control -0.026 -0.005
(0.018) (0.004)

Mother in “male” professional occupation 0.027 -0.010
(0.037) (0.007)

Mother in “female” professional occupation 0.097** -0.032**
(0.039) (0.009)

Father in “male” professional occupation -0.078** -0.017**
(0.033) (0.008)

Father in “female” professional occupation -0.065** -0.045***
(0.033) (0.010)

Standard errors in parentheses; *** significant at the 1% level, ** at the 5% level, * at the 10% level.

“Male” professional occupations is the base group. All equations include year indicators and individual

time means for college and graduate education.

49


