SMOOTHED ESTIMATING EQUATIONS
FOR INSTRUMENTAL VARIABLES QUANTILE REGRESSION

DAVID M. KAPLAN AND YIXIAO SUN

ABSTRACT. The moment conditions or estimating equations for instrumental variables quantile regression involve the discontinuous indicator function. We instead use smoothed estimating equations (SEE), with bandwidth h. We show that the mean squared error of the vector of the SEE is minimized for some $h > 0$, which leads to smaller asymptotic mean squared errors of the estimating equations and associated parameter estimators. The same MSE-optimal h also minimizes the higher-order type I error of a SEE-based χ^2 test. Using this bandwidth, we further show that the the SEE-based χ^2 test has higher size-adjusted power in large samples. Computation of the SEE estimator also becomes simpler and more reliable, especially with (more) endogenous regressors. Monte Carlo simulations demonstrate all of these superior properties in finite samples. Smoothing the estimating equations is not just a technical operation for establishing Edgeworth expansions and bootstrap refinements; it also brings us the real benefits of having more precise estimators and more powerful tests.

Keywords: Edgeworth expansion, Instrumental variable, Optimal smoothing parameter choice, Quantile regression, Smoothed estimating equation.

JEL Classification Number: C13, C21.

1. INTRODUCTION

Many econometric models are specified by moment conditions or estimating equations. An advantage of this approach is that the full distribution of the data does not have to be parameterized. In this paper, we consider estimating equations that are not smooth in the parameter of interest. We focus on the instrumental variables quantile regression (IV-QR), which includes the usual quantile regression as a special case. Instead of using the estimating equations that involve the nonsmooth indicator function, we propose to smooth the indicator function, leading to our smoothed estimating equations (SEE) and SEE estimator.

Our SEE estimator has several advantages. First, from a computational point of view, the SEE estimator can be computed using any standard iterative algorithm that requires smoothness. This is especially attractive in IV-QR where simplex methods for the usual
QR are not applicable. In fact, via personal communications, we learned that the SEE approach has been used in Chen and Pouzo (2009, 2012) for computing their nonparametric sieve estimators in the presence of nonsmooth moments or generalized residuals. However, a rigorous investigation is currently lacking. Our paper can be regarded as a first step towards justifying the SEE approach in nonparametric settings. Second, from a technical point of view, smoothing the estimating equations enables us to establish high-order properties of the estimator. This motivated Horowitz (1998), for instance, to examine a smoothed objective function for median regression, to show high-order bootstrap refinement. Instead of smoothing the objective function, we show that there is an advantage of smoothing the estimating equations. This point has not been recognized and emphasized in the literature. For QR estimation and inference via empirical likelihood, Otsu (2008) and Whang (2006) also examined smoothed estimators. To the best of our knowledge, nobody has examined smoothing the estimating equations for the usual QR estimator, let alone IV-QR. Third, from a statistical point of view, the SEE estimator is a flexible class of estimators that includes the IV/OLS mean regression estimators and median and quantile regression estimators as special cases. Depending on the smoothing parameter, the SEE estimator can have different degrees of robustness in the sense of Huber (1964). By selecting the smoothing parameter appropriately, we can harness the advantages of both the mean regression estimator and the median/quantile regression estimator. Fourth and most importantly, from an econometric point of view, smoothing can reduce the mean squared error (MSE) of the SEE, which in turn leads to a smaller asymptotic MSE of the parameter estimator and to more powerful tests. We seem to be the first to establish these advantages.

In addition to investigating the asymptotic properties of the SEE estimator, we provide a smoothing parameter choice that minimizes different criteria: the MSE of the SEE, the type I error of a chi-square test subject to exact asymptotic size, and the approximate MSE of the parameter estimator. We show that the first two criteria produce the same optimal smoothing parameter, which is also optimal under a variant of the third criterion. With the data-driven smoothing parameter choice, we show that the statistical and econometric advantages of the SEE estimator are reflected clearly in our simulation results.

The rest of the paper is organized as follows. Section 2 describes our setup and discusses some illuminating connections with other estimators. Sections 3, 4, and 5 calculate the MSE of the SEE, the type I and type II errors of a chi-square test, and the approximate MSE of the parameter estimator, respectively. Section 6 presents simulation results before we conclude. Longer proofs and calculations are gathered in the appendix.

2. Smoothed Estimating Equations

2.1. Setup. We are interested in estimating the instrumental variables quantile regression (IV-QR) model

\[Y_j = X_j' \beta_0 + U_j \]
where $EZ_j[1\{U_j < 0\} - q] = 0$ for instrument vector $Z_j \in \mathbb{R}^d$ and $1\{\cdot\}$ is the indicator function. Instruments are taken as given; this does not preclude first determining the efficient set of instruments as in [Newey (2004) or Newey and Powell (1990)], for example. We restrict attention to the “just identified” case $X_j \in \mathbb{R}^d$ and iid data for simpler exposition; for the overidentified case, see (1) below.

A special case of this model is exogenous QR with $Z_j = X_j$, which is typically estimated by minimizing a criterion function:

$$
\hat{\beta}_Q \equiv \arg \min_{\beta} \frac{1}{n} \sum_{j=1}^{n} \rho_q(Y_j - X_j'\beta),
$$

where $\rho_q(u) \equiv [q - 1(\cdot < 0)]u$ is the check function. Since the objective function is not smooth, it is not easy to obtain a high-order approximation to the sampling distribution of $\hat{\beta}_Q$. To avoid this technical difficulty, [Horowitz (1998)] proposes to smooth the objective function to obtain

$$
\hat{\beta}_H \equiv \arg \min_{\beta} \frac{1}{n} \sum_{j=1}^{n} \rho^H_q(Y_j - X_j'\beta), \quad \rho^H_q(u) \equiv [q - G(-u/h)]u,
$$

where $G(\cdot)$ is a smooth function and h is the smoothing parameter or bandwidth. Instead of smoothing the objective function, we smooth the underlying moment condition and define $\hat{\beta}$ to be the solution of the vector of smoothed estimating equations (SEE) $m_n(\hat{\beta}) = 0$, where

$$
m_n(\beta) \equiv \frac{1}{\sqrt{n}} \sum_{j=1}^{n} W_j(\beta) \text{ and } W_j(\beta) \equiv Z_j \left[G\left(\frac{X_j'\beta - Y_j}{h} \right) - q \right].
$$

Our approach is related to kernel-based nonparametric conditional quantile estimators. The moment condition there is $E[1\{X = x\} (1\{Y < \beta\} - q)] = 0$. Usually the $1\{X = x\}$ indicator function is “smoothed” with a kernel, while the latter term is not. This yields the nonparametric conditional quantile estimator $\hat{\beta}_q(x) = \arg \min_b \sum_{i=1}^{n} \rho_b(Y_i - b) K[(x - X_i)/h]$ for the conditional q-quantile at $X = x$, estimated with kernel $K(\cdot)$ and bandwidth h. Our approach is different in that we smooth the indicator $1\{Y < \beta\}$ rather than $1\{X = x\}$. Smoothing both terms may help but is beyond the scope of this paper.

Estimating $\hat{\beta}$ from the SEE is computationally easy: d equations for d parameters, and a known, analytic Jacobian. Computationally, solving our problem is faster and more reliable than the IV-QR method in [Chernozhukov and Hansen (2006)], which requires specification of a grid of endogenous coefficient values to search over, computing a conventional QR estimator for each grid point. This advantage is important particularly when there are more endogenous variables.

1It suffices to have $m_n(\hat{\beta}) = o_p(1)$, which allows for a small error when $\hat{\beta}$ is not the exact solution to $m_n(\hat{\beta}) = 0$.
If the model is overidentified with \(\text{dim}(Z_j) > \text{dim}(X_j) \), we can use a \(\text{dim}(X_j) \times \text{dim}(Z_j) \) matrix \(\mathbb{W} \) to transform the original moment conditions \(E(Z_j[q - 1\{Y_j < X'_j\beta\}]) = 0 \) into
\[
E\left(\tilde{Z}_j[q - 1\{Y_j < X'_j\beta\}]\right) = 0, \quad \text{for } \tilde{Z}_j = \mathbb{W}Z_j \in \mathbb{R}^{\text{dim}(X_j)}. \tag{1}
\]
Then we have an exactly identified model with transformed instrument vector \(\tilde{Z}_j \), and our asymptotic analysis can be applied to (1).

By the theory of optimal estimating equations or efficient two-step GMM, the optimal \(\mathbb{W} \) takes the following form:
\[
\mathbb{W} = \frac{\partial}{\partial \beta} E[Z'(q - 1\{Y < X'\beta\})]\bigg|_{\beta = \beta_0} \text{Var}[Z(q - 1\{Y < X'\beta_0\})]^{-1}
\]
\[
= [EXZ'f_{U|Z,X}(0)] [EZ'\sigma^2(Z)]^{-1},
\]
where \(f_{U|Z,X}(0) \) is the conditional PDF of \(U \) evaluated at \(U = 0 \) given \((Z, X) \) and \(\sigma^2(Z) = \text{Var}(1\{U < 0\} | Z) \). The standard two-step approach requires an initial estimator of \(\beta_0 \) and nonparametric estimators of \(f_{U|Z,X}(0) \) and \(\sigma^2(Z) \). The underlying nonparametric estimation error may outweigh the benefit of having an optimal weighting matrix. This is especially a concern when the dimensions of \(X \) and \(Z \) are large. In practice, a simple procedure is to ignore \(f_{U|Z,X}(0) \) and \(\sigma^2(Z) \) (or assume that they are constants) and employ the following empirical weighting matrix,
\[
\mathbb{W}_n = \left[\frac{1}{n} \sum_{j=1}^{n} X_jZ'_j \right] \left[\frac{1}{n} \sum_{j=1}^{n} Z_jZ'_j \right]^{-1}.
\]
This choice of \(\mathbb{W}_n \) is in the spirit of the influential work of Liang and Zeger (1986) who advocate the use of a working correlation matrix in constructing the weighting matrix. Given the above choice of \(\mathbb{W}_n \), \(\tilde{Z}_j \) is the least squares projection of \(X_j \) on \(Z_j \). It is easy to show that with some notational changes our asymptotic results remain valid in this case.

2.2. Comparison with other estimators.

Smoothed criterion function. For the special case \(Z_j = X_j \), we compare the SEE with that derived from smoothing the criterion function as in Horowitz (1998). The first order condition of the smoothed criterion function, evaluated at the true \(\beta_0 \), is
\[
0 = \frac{\partial}{\partial \beta} \bigg|_{\beta = \beta_0} n^{-1} \sum_{i=1}^{n} \left[q - G\left(\frac{X'_i\beta - Y_i}{h}\right)\right] (Y_i - X'_i\beta) = n^{-1} \sum_{i=1}^{n} \left[-qX_i - G'(-U_i/h)(X_i/h)Y_i + G'(-U_i/h)(X_i/h)X'_i\beta_0 + G(-U_i/h)X_i \right]
\]
\[
= n^{-1} \sum_{i=1}^{n} X_i[G(-U_i/h) - q] + n^{-1} \sum_{i=1}^{n} G'(-U_i/h)[(X_i/h)X'_i\beta_0 - (X_i/h)Y_i]
\]
Here the first term agrees with our proposed SEE. Technically, it should be easier to establish high-order results for our SEE estimator since it has one fewer term. Later we show that the absolute bias of our SEE estimator is smaller, too. Another subtle point is that our SEE requires only the estimating equation $EX_j[1\{U_j < 0\} − q] = 0$ while [Horowitz (1998)] has to impose an additional condition to ensure that the second term in the FOC is approximately mean zero.

IV mean regression. When $h \to \infty$, $G(\cdot)$ only takes arguments near zero and thus can be approximated well linearly. For example, with the $G(\cdot)$ from [Whang (2006)] and [Horowitz (1998)], $G(v) = 0.5 + (105/64)v + O(v^3)$ as $v \to 0$. Ignoring the $O(v^3)$, the corresponding estimator $\hat{\beta}_{\infty}$ is defined by

$$0 = \frac{1}{n} \sum_{i=1}^{n} Z_i \left[G\left(\frac{X_i'\hat{\beta}_{\infty} - Y_i}{h}\right) - q \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} Z_i \left[\left(0.5 + (105/64)\frac{X_i'\hat{\beta}_{\infty} - Y_i}{h}\right) - q \right]$$

$$= \frac{105}{64h} Z'X\hat{\beta}_{\infty} - \frac{105}{64h} Z'Y + (0.5 - q)Z'e_1$$

$$= \frac{105}{64h} Z'X\hat{\beta}_{\infty} - \frac{105}{64h} Z'Y + (0.5 - q)Z'(Xe_1)$$

where $e_1 = (1, 0, \ldots, 0)'$ is $d \times 1$, $1_{n,1} = (1, 1, \ldots, 1)'$ is $n \times 1$, X and Z are $n \times d$ with respective rows X'_i and Z'_i, and using the fact that the first column of X is $1_{n,1}$ so that $Xe_1 = 1_{n,1}$. It then follows that

$$\hat{\beta}_{\infty} = \hat{\beta}_{IV} + \left(\frac{64h}{105}(q - 0.5), 0, \ldots, 0\right)'$$

As h grows large, the smoothed QR estimator approaches the IV estimator plus an adjustment to the intercept term that depends on q, the bandwidth, and the slope of $G(\cdot)$ at zero. In the special case $Z_j = X_j$, the IV estimator is the OLS estimator.

The intercept is often not of interest, and when $q = 0.5$, the adjustment is zero anyway. The class of SEE estimators is a continuum (indexed by h) with two well-known special cases at the extremes: unsmoothed IV-QR and mean IV. For $q = 0.5$ and $Z_j = X_j$, this is median regression and mean regression (OLS). Well known are the relative efficiency advantages of the median and the mean for different error distributions. Our estimator with a data-driven bandwidth can harness the advantages of both, without requiring the practitioner to make guesses about the unknown error distribution.

2This is different from [Zhou et al. (2011)], who add the d OLS moment conditions to the d median regression moment conditions before estimation; our connection to IV/OLS emerges naturally from smoothing the (IV)QR estimating equations.
Robust estimation. With $Z_j = X_j$, the result that our SEE can yield OLS when $h \to \infty$ or median regression when $h = 0$ calls to mind robust estimators like the trimmed or Winsorized mean (and corresponding regression estimators). Setting the trimming/Winsorization parameter to zero generates the mean while the other extreme generates the median. However, our SEE mechanism is different and more general/ flexible; trimming/Winsorization is not directly applicable to $q \neq 0.5$; our method to select the smoothing parameter is novel; and the motivations for QR extend beyond (though include) robustness.

With $X_i = 1$ and $q = 0.5$ (population median estimation), our SEE becomes

$$0 = n^{-1} \sum_{i=1}^{n} [2G((\beta - Y_i)/h) - 1].$$

If $G(u)$ is supported on $[-1,1]$, then $H(u) \equiv 2G(u) - 1$ takes value 1 for $u \geq 1$ and -1 for $u \leq -1$. Our estimator is then an M-estimator of ψ-type defined by $\sum_{i=1}^{n} \psi(Y_i; \beta) = 0$ where $\psi(Y_i; \beta) = H((\beta - Y_i)/h)$. If $H(u)$ is piecewise linear with $H(u) = u$ for $u \in [-1,1]$, then we have a Winsorized mean estimator of the type in Huber (1964, example (iii) on page 79). In our framework, this is equivalent to choosing $G'(\cdot)$ to be the uniform kernel.

Further theoretical comparison of our SEE-QR with trimmed/Winsorized mean regression (and the IV versions) would be interesting but is beyond the scope of this paper. For more on robust location and regression estimators, see for example Huber (1964), Koenker and Bassett (1978), and Ruppert and Carroll (1980).

3. MSE of the SEE

Since statistical inference can be made based on the estimating equations (EEs), we examine the mean squared error (MSE) of the SEE. The MSE of the SEE is related to the estimator MSE and inference properties both intuitively and (as we will show) theoretically. Such a result may provide helpful guidance in contexts where the SEE MSE is easier to compute than the estimator MSE, and it provides insight into how smoothing works in the QR model as well as results that will be used in subsequent sections.

We maintain different subsets of the following assumptions for different results. We write $f_{U|Z}(\cdot \mid z)$ and $F_{U|Z}(\cdot \mid z)$ as the conditional PDF and CDF of U given $Z = z$. We define $f_{U|Z,X}(\cdot \mid z, x)$ and $F_{U|Z,X}(\cdot \mid z, x)$ similarly.

Assumption 1. (X'_j, Z'_j, Y_j) is iid across $j = 1, 2, \ldots, n$, where $Y_j = X'_j \beta_0 + U_j$, X_j is an observed $d \times 1$ vector of stochastic regressors that can include a constant, β_0 is an unknown $d \times 1$ constant vector, U_j is an unobserved random scalar, and Z_j is an observed $d \times 1$ vector of instruments such that $E(Z_j [1\{U_j < 0\} - q]) = 0$.

Assumption 2. (i) Z_j has bounded support. (ii) $E(\{Z_j Z'_j\})$ is nonsingular.

\footnote{For a strict mapping, multiply by h to get $\psi(Y_i; \beta) = hH((\beta - Y_i)/h)$. The solution is equivalent since $\sum h\psi(Y_i; \beta) = 0$ is the same as $\sum \psi(Y_i; \beta) = 0$ for any nonzero constant h.}
Assumption 3. (i) \(P(U_j < 0 \mid Z_j = z) = q \) for almost all \(z \in Z \), the support of \(Z \). (ii) For all \(u \) in a neighborhood of zero and almost all \(z \in Z \), \(f_{U|Z}(u \mid z) \) exists, is bounded away from zero, and is \(r \) times continuously differentiable with \(r \geq 2 \). (iii) There exists a function \(C(z) \) such that \(\left| f_{U|Z}^{(s)}(u \mid z) \right| \leq C(z) \) for \(s = 0, 2, \ldots, r \), almost all \(z \in Z \) and \(u \) in a neighborhood of zero, and \(E[C(Z)\|Z\|^2] < \infty \).

Assumption 4. (i) \(G(v) \) is a bounded function satisfying \(G(v) = 0 \) for \(v \leq -1 \), \(G(v) = 1 \) for \(v \geq 1 \), and \(1 - \int_{-1}^{1} G^2(u)du > 0 \). (ii) \(G'(\cdot) \) is a symmetric and bounded \(r \)th order kernel with \(r \geq 2 \) so that \(\int_{-1}^{1} G'(v)dv = 1 \), \(\int_{-1}^{1} v^kG'(v)dv = 0 \) for \(k = 1, 2, \ldots, r - 1 \), \(\int_{-1}^{1} |v^rG'(v)|dv < \infty \), and \(\int_{-1}^{1} v^rG'(v)dv \neq 0 \). (iii) Let \(\tilde{G}(u) = (G(u), [G(u)]^2, \ldots, [G(u)]^{L+1})' \) for some \(L \geq 1 \). For any \(\theta \in \mathbb{R}^{L+1} \) satisfying \(\|\theta\| = 1 \), there is a partition of \([-1, 1]\) given by \(-1 = a_0 < a_1 < \cdots < a_{L+1} = 1\) such that \(\theta' \tilde{G}(u) \) is either strictly positive or strictly negative on the intervals \((a_{i-1}, a_i)\) for \(i = 1, 2, \ldots, L + 1 \).

Assumption 5. \(h \propto n^{-\kappa} \) for \(1/(2r) < \kappa < 1 \).

Assumption 6. \(\beta = \beta_0 \) uniquely solves \(E\left(Z_j \left[q - 1\{Y_j < X'_j\beta\}\right]\right) = 0 \) over \(\beta \in \mathcal{B} \).

Assumption 7. (i) \(f_{U|Z,X}(u \mid z, x) \) is \(r \) times continuously differentiable in \(u \) in a neighborhood of zero for almost all \(x \in X \) and \(Z \in Z \) for \(r \geq 2 \). (ii) \(\Sigma_{ZX} = E\left[Z_jX'_j f_{U|Z,X}(0 \mid Z_j, X_j)\right] \) is nonsingular.

Assumption 1 describes the sampling process. Assumption 2 is analogous to Assumption 3 in both Horowitz (1998) and Whang (2006). As discussed in these two papers, the boundedness assumption for \(Z_j \), which is a technical condition, is made only for convenience and can be dropped at the cost of more complicated proofs.

Assumption 3(i) allows us to use the law of iterated expectations to simplify the asymptotic variance. Our qualitative conclusions do not rely on this assumption. Assumption 3(ii) is critical. If we are not willing to make such an assumption, then smoothing will be of no benefit. Inversely, with some small degree of smoothness of the conditional error density, smoothing can leverage this into the advantages described here. Also note that Horowitz (1998) assumes \(r \geq 4 \), which is sufficient for the estimator MSE result in §5.

Assumptions 4(i–ii) are analogous to the standard high order kernel conditions in the kernel smoothing literature. The integral condition in (i) ensures that smoothing reduces (rather than increases) variance; it is easy to verify and holds automatically for \(r = 2 \) given (ii). Assumption 4(iii) is needed for the Edgeworth expansion. As Horowitz (1998) and Whang (2006) discuss, Assumption 4(iii) is a technical assumption that (along with Assumption 5) leads to a form of Cramér’s condition, which is needed to justify the Edgeworth expansion used in §4. Assumption 5 ensures that the bias of the SEE is of smaller order than its variance. It is needed for the asymptotic normality of the SEE as well as the Edgeworth expansion.

Define

$$W_j \equiv W_j(\beta_0) = Z_j[G(-U_j/h) - q]$$

and abbreviate $m_n \equiv m_n(\beta_0) = n^{-1/2} \sum_{j=1}^{n} W_j$. The theorem below gives the first two moments of W_j and the first-order asymptotic distribution of m_n.

Theorem 1. Let Assumptions [2(i), 3, and 4(i–ii)] hold. Then

$$E(W_j) = \frac{(-h)^r}{r!} \left(\int_{-1}^{1} G'(v)v^r \, dv \right) E\left[f_{U|Z}^{(r-1)}(0 \mid Z_j)Z_j \right] + o(h^r), \tag{2}$$

$$E(W_jW_j) = q(1-q)E\{Z_j'Z_j\} - h \left[1 - \int_{-1}^{1} G^2(u) \, du \right] E\{f_{U|Z}(0 \mid Z_j)Z_j'Z_j\} + O(h^2), \tag{3}$$

$$E(W_jW_j') = q(1-q)E\{Z_jZ_j'\} - h \left[1 - \int_{-1}^{1} G^2(u) \, du \right] E\{f_{U|Z}(0 \mid Z_j)Z_jZ_j'\} + O(h^2).$$

If additionally Assumptions [4] and [5] hold, then

$$m_n \xrightarrow{d} N(0,V), \quad V \equiv \lim_{n \to \infty} E\{ (W_j - EW_j)(W_j - EW_j)' \} = q(1-q)E(Z_jZ_j').$$

Theorem [4] shows that $E(W_j) = O(h^r)$. This bias is smaller than that of the SEE derived from smoothing the criterion function as in Horowitz (1998). The bias of the EE derived from the smoothed criterion function is

$$E\{G(-U_j/h) - q\mid Z_j\} - \frac{1}{h} \left[U_jG'(U_j/h)Z_j \right]$$

$$= \frac{(-h)^r}{r!} \left(\frac{1}{r!} + \frac{1}{(r-1)!} \right) \left(\int G'(v)v^r \, dv \right) E\left[f_{U|Z}^{(r-1)}(0 \mid Z_j)Z_j \right] + o(h^r),$$

as calculated in the appendix. The dominating term of the bias of our SEE is smaller in absolute value than that of the EE derived from a smoothed criterion function. A larger bias can lead to less accurate confidence regions if the same variance estimator is used.

The first-order asymptotic variance V is the same as the asymptotic variance of

$$n^{-1/2} \sum_{j=1}^{n} Z_j[1\{U_j < 0\} - q],$$

the scaled EE of the unsmoothed IV-QR. The effect of smoothing to reduce variance is captured by the term of order h, where $1 - \int_{-1}^{1} G^2(u) \, du > 0$ by Assumption [4(i)]. This reduction in variance is not surprising. Replacing the discontinuous indicator function $1\{U < 0\}$ by a smooth function $G(-U/h)$ pushes the dichotomous values of zero and one into some values in between, leading to a smaller variance. The idea is similar to Breiman’s (1994) bagging (bootstrap aggregating), among others.
Define the MSE of the SEE to be \(E\{m'_n V^{-1} m_n\} \). Building upon (2) and (3), and using \(W_i \perp \perp W_j \) for \(i \neq j \), we have:

\[
E\{m'_n V^{-1} m_n\} = \frac{1}{n} n \sum_{j=1}^n E\{W_j V^{-1}_j W_j\} + \frac{1}{n} \sum_{j=1}^n \sum_{i \neq j} E(W_i' V^{-1} W_j)
\]

\[
= \frac{1}{n} \sum_{j=1}^n E\{W_j V^{-1}_j W_j\} + \frac{1}{n} (n-1)(EW_j' V^{-1}_j EW_j)
\]

\[
= q(1 - q)E\{Z_j' V^{-1}_j Z_j\} + nh^{2r}(EB)'(EB) - htr\{E(AA')\} + o(h + nh^{2r}),
\]

\[
= d + nh^{2r}(EB)'(EB) - htr\{E(AA')\} + o(h + nh^{2r}),
\]

where

\[
A \equiv \left(1 - \int_{-1}^1 G^2(u)du\right)^{1/2} \left[f_{U|Z}(0 \mid Z)\right]^{1/2} V^{-1/2} Z,
\]

\[
B \equiv \left(\frac{1}{r!} \int_{-1}^1 G'(v)v^r dv\right) f_{U|Z}(r-1)(0 \mid Z) V^{-1/2} Z.
\]

Ignoring the \(o(\cdot) \) term, we obtain the asymptotic MSE of the SEE. We select the smoothing parameter to minimize the asymptotic MSE:

\[
h^*_\text{SEE} \equiv \arg\min_h nh^{2r}(EB)'(EB) - htr\{E(AA')\}.
\]

Proposition 2. Let Assumptions 1, 2, 3, and 4(i–ii) hold. The bandwidth that minimizes the asymptotic MSE of the SEE is

\[
h^*_\text{SEE} = \left(\frac{\text{tr}\{E(AA')\}}{(EB)'(EB) 2nr}\right)^{\frac{1}{2r-1}}.
\]

Under the stronger assumption \(U \perp \perp Z \),

\[
h^*_\text{SEE} = \left(\frac{(r!)^2 \left[1 - \int_{-1}^1 G^2(u)du\right] f_U(0)}{2r \left(\int_{-1}^1 G'(v)v^r dv\right)^2 \left[f_U^{(r-1)}(0)\right]^2} \frac{d}{n}\right)^{\frac{1}{2r-1}}.
\]

When \(r = 2 \), the MSE optimal \(h^*_\text{SEE} \propto n^{-1/(2r-1)} = n^{-1/3} \). This is smaller than \(n^{-1/5} \), the rate that minimizes the MSE of estimated standard errors of the usual regression quantiles. Since nonparametric estimators of \(f_U^{(r-1)}(0) \) converge slowly, we propose a parametric plug-in described in §6.

We point out in passing that the optimal smoothing parameter \(h^*_\text{SEE} \) is invariant to rotation and translation of the (non-constant) regressors. This may not be obvious but can be proved easily.
For the unsmoothed IV-QR, let
\[\tilde{m}_n = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} Z_j [1\{Y_j \leq X_j \beta \} - q], \]
then the MSE of the estimating equations is \(E(\tilde{m}'_n V^{-1} \tilde{m}_n) = d. \) Comparing this to the MSE of the SEE given in (4), we find that the SEE has a smaller MSE when \(h = h^*_{\text{SEE}} \) because
\[n(h^*_{\text{SEE}})^2 r(EB)'(EB) - h^*_{\text{SEE}} \text{tr}\{E(\hat{A}'\hat{A})\} = -h^*_{\text{SEE}} \left(1 - \frac{1}{2r} \right) \text{tr}\{E(\hat{A}'\hat{A})\} < 0. \]
In terms of MSE, it is advantageous to smooth the estimating equations. To the best of our knowledge, this point has never been discussed before in the literature.

4. Type I and Type II Errors of a Chi-square Test

In this section, we explore the effect of smoothing on a chi-square test. Other alternatives for inference exist, such as the Bernoulli-based MCMC-computed method from Chernozhukov et al. (2009), empirical likelihood as in Whang (2006), and bootstrap as in Horowitz (1998), where the latter two also use smoothing. Intuitively, when we minimize the MSE, we may expect lower type I error: the \(\chi^2 \) critical value is from the unsmoothed distribution, and smoothing to minimize MSE makes large values (that cause the test to reject) less likely. The reduced MSE also makes it easier to distinguish the null hypothesis from some given alternative. This combination leads to improved size-adjusted power. As seen in our simulations, this is true especially for the IV case.

Using the results in §3 and under Assumption 5, we have
\[m_n' V^{-1} m_n \overset{d}{\to} \chi^2_d, \]
where we continue to use the notation \(m_n \equiv m_n(\beta_0) \). From this asymptotic result, we can construct a hypothesis test that rejects the null hypothesis \(H_0 : \beta = \beta_0 \) when
\[S_n \equiv m_n' \hat{V}^{-1} m_n > c_\alpha, \]
where
\[\hat{V} = q(1-q) \frac{1}{n} \sum_{j=1}^{n} Z_j Z_j' \]
is a consistent estimator of \(V \) and \(c_\alpha \equiv \chi^2_{d,1-\alpha} \) is the \(1 - \alpha \) quantile of the chi-square distribution with \(d \) degrees of freedom. As desired, the asymptotic size is
\[\lim_{n \to \infty} P(S_n > c_\alpha) = \alpha. \]
Here \(P \equiv P_{\beta_0} \) is the probability measure under the true model parameter \(\beta_0 \). We suppress the subscript \(\beta_0 \) when there is no confusion.

It is important to point out that the above result does not rely on the strong identification of \(\beta_0 \). It still holds if \(\beta_0 \) is weakly identified or even unidentified. This is an advantage of focusing
on the estimating equations instead of the parameter estimator. When a direct inference method based on the asymptotic normality of $\hat{\beta}$ is used, we have to impose Assumptions 6 and 7.

4.1. Type I error and the associated optimal bandwidth. To more precisely measure the type I error $P(S_n > c_\alpha)$, we first develop a high-order stochastic expansion of S_n. Let $V_n \equiv \text{Var}(m_n)$. Following the same calculation as in (4), we have

$$V_n = V - h \left[1 - \int_{-1}^{1} G^2(u)du \right] E[f_U|Z(0 | Z_j)Z_j] + O(h^2)$$

$$= V^{1/2} \left[I_d - hE(AA') + O(h^2) \right] \left(V^{1/2} \right)' ,$$

where $V^{1/2}$ is the matrix square root of V such that $V^{1/2}V^{1/2} = V$. We can choose $V^{1/2}$ to be symmetric but do not have to.

Details of the following are in the appendix; here we outline our strategy and highlight key results. Letting

$$\Lambda_n = V^{1/2} \left[I_d - hE(AA') + O(h^2) \right]^{1/2}$$

such that $\Lambda_n\Lambda_n' = V_n$, and defining

$$\bar{W}_n = \frac{1}{n} \sum_{j=1}^{n} W_j^* \quad \text{and} \quad W_j^* = \Lambda_n^{-1} Z_j [G(-U_j/h) - q],$$

we can approximate the test statistic as $S_n = S_n^L + e_n$ where

$$S_n^L = \left(\sqrt{n}\bar{W}_n^* \right)' \left(\sqrt{n}\bar{W}_n^* \right) - h \left(\sqrt{n}\bar{W}_n^* \right)' E(AA') \left(\sqrt{n}\bar{W}_n^* \right),$$

and e_n is the remainder term satisfying $P(|e_n| > O(h^2)) = O(h^2)$.

The stochastic expansion above allows us to approximate the characteristic function of S_n with that of S_n^L. Taking the Fourier–Stieltjes inverse of the characteristic function yields an approximation of the distribution function, from which we can calculate the type I error by plugging in the critical value c_α.

Theorem 3. Under Assumptions 1–5, we have

$$P(S_n^L < x) = \mathcal{G}_d(x) - \mathcal{G}_{d+2}(x) \left\{ nh^{2r} (EB)'(EB) - htr\{ E(AA') \} \right\} + R_n,$$

$$P(S_n > c_\alpha) = \alpha + \mathcal{G}_{d+2}'(c_\alpha) \left\{ nh^{2r} (EB)'(EB) - htr\{ E(AA') \} \right\} + R_n,$$

where $R_n = O(h^2 + nh^{2r+1})$ and $\mathcal{G}_d(x)$ is the CDF of the χ^2_d distribution.

From Theorem 3, an approximate measure of the type I error of the SEE-based chi-square test is

$$\alpha + \mathcal{G}_{d+2}'(c_\alpha) \left\{ nh^{2r} (EB)'(EB) - htr\{ E(AA') \} \right\},$$
and an approximate measure of the coverage probability error (CPE) is\footnote{The CPE is defined to be the nominal coverage minus the true coverage probability, which may be different from the usual definition. Under this definition, smaller CPE corresponds to higher coverage probability (and smaller type I error).}

\[
\text{CPE} = \mathcal{G}_{d+2}(c_\alpha)[nh^{2r}(EB)'(EB) - h\text{tr}\{E(AA')\}],
\]

which is also the error in rejection probability under the null.

Up to smaller-order terms, the term \(nh^{2r}(EB)'(EB)\) characterizes the bias effect from smoothing. The bias increases type I error and reduces coverage probability. The term \(h\text{tr}\{E(AA')\}\) characterizes the variance effect from smoothing. The variance reduction decreases type I error and increases coverage probability. The type I error is \(\alpha\) up to order \(O(h + nh^{2r})\). There exists some \(h > 0\) that makes bias and variance effects cancel, leaving type I error equal to \(\alpha\) up to smaller-order terms in \(R_n\).

Note that \(nh^{2r}(EB)'(EB) - h\text{tr}\{E(AA')\}\) is identical to the high-order term in the asymptotic MSE of the SEE in \(\cite{4}\). The \(h^*_{\text{CPE}}\) that minimizes type I error is the same as \(h^*_{\text{SEE}}\).

Proposition 4. Let Assumptions \(\cite{2}\) hold. The bandwidth that minimizes the approximate type I error of the chi-square test based on the test statistic \(S_n\) is

\[
h^*_{\text{CPE}} = h^*_{\text{SEE}} = \left(\frac{\text{tr}\{E(AA')\}}{(EB)'(EB)2nr}\right)^{-\frac{1}{2r}}.
\]

The result that \(h^*_{\text{CPE}} = h^*_{\text{SEE}}\) is intuitive. Since \(h^*_{\text{SEE}}\) minimizes \(E[m_n'V^{-1}m_n]\), for a test with \(c_\alpha\) and \(\tilde{V}\) both invariant to \(h\), the null rejection probability \(P(m_n'\tilde{V}^{-1}m_n > c_\alpha)\) should be smaller when the SEE’s MSE is smaller.

When \(h = h^*_{\text{CPE}}\),

\[
P(S_n > c_\alpha) = \alpha - C^+\mathcal{G}_{d+2}(c_\alpha)h^*_{\text{CPE}}(1 + o(1))
\]

where \(C^+ = (1 - \frac{1}{2r})\text{tr}\{E(AA')\} > 0\). If instead we construct the test statistic based on the unsmoothed estimating equations, \(\tilde{S}_n = \tilde{m}_n'\tilde{V}^{-1}\tilde{m}_n\), then it can be shown that

\[
P(\tilde{S}_n > c_\alpha) = \alpha + Cn^{-1/2}(1 + o(1))
\]

for some constant \(C\), which is in general not equal to zero. Given that \(n^{-1/2} = o(h^*_{\text{CPE}})\) and \(C^+ > 0\), we can expect the SEE-based chi-square test to have a smaller type I error in large samples.

4.2. Type II error and the local asymptotic power. To obtain the local asymptotic power of the \(S_n\) test, we let the true parameter value be \(\beta_n = \beta_0 - \delta/\sqrt{n}\) where \(\beta_0\) is the parameter value that satisfies the null hypothesis \(H_0\). In this case, we have

\[
m_n(\beta_0) = \frac{1}{\sqrt{n}}\sum_{j=1}^{n} Z_j \left[G\left(\frac{X_j'\delta/\sqrt{n} - U_j}{h}\right) - q\right].
\]
In the proof of Theorem 5, we show that

\[Em_n(\beta_0) = \Sigma_Z \delta + \sqrt{n}(h)^{1/2} E(B) + O\left(\frac{1}{\sqrt{n}} + \sqrt{n}h^{r+1}\right), \]

\[V_n = \text{Var}[m_n(\beta_0)] = V - hV^{1/2}(EAA')(V^{1/2})' + O\left(\frac{1}{\sqrt{n}} + h^2\right). \]

Theorem 5. Let Assumptions 1–5 and 7(i) hold. Define \(\Delta = E[V_n^{-1/2}m_n(\beta_0)] \) and \(\tilde{\delta} \equiv V^{-1/2}\Sigma_ZX\delta \). We have

\[
P_{\beta_n}(S_n < x) = G_d\left(x; ||\Delta||^2\right) + G_d'(x; ||\Delta||^2)h\text{tr}\left\{E(AA')\right\}
+ G_d'(d+4)(x; ||\Delta||^2)h\left[\Delta'E(AA')\Delta\right] + O\left(h^2 + n^{-1/2}\right)
= G_d\left(x; ||\tilde{\delta}||^2\right) - G_d'(d+2)(x; ||\tilde{\delta}||^2)\left[nh^{2r}(EB)'(EB) - h\text{tr}\left\{E(AA')\right\}\right]
+ \left[G_d'(d+4)(x; ||\tilde{\delta}||^2) - G_d'(d+2)(x; ||\tilde{\delta}||^2)\right]\frac{\tilde{\delta}'E(AA')\tilde{\delta}}{2}
- G_d'(d+2)(x; ||\tilde{\delta}||^2)2\tilde{\delta}' \sqrt{n}(h)^{1/2} E(B) + O\left(h^2 + n^{-1/2}\right),
\]

where \(G_d(x; \lambda) \) is the CDF of the noncentral chi-square distribution with degrees of freedom \(d \) and noncentrality parameter \(\lambda \). If we further assume that \(\tilde{\delta} \) is uniformly distributed on the sphere \(S_d(\tau) = \{\tilde{\delta} \in \mathbb{R}^d : ||\tilde{\delta}|| = \tau\} \), then

\[
E_{\tilde{\delta}}P_{\beta_n}(S_n > c_{\alpha})
= 1 - G_d(c_{\alpha}; \tau^2) + G_d'(d+2)(c_{\alpha}; \tau^2)\left[nh^{2r}(EB)'(EB) - h\text{tr}E(AA')\right]
- \left[G_d'(d+4)(c_{\alpha}; \tau^2) - G_d'(d+2)(c_{\alpha}; \tau^2)\right]\frac{\tau^2}{d}\text{tr}\left\{E(AA')\right\} + O\left(h^2 + n^{-1/2}\right)
\]

where \(E_{\tilde{\delta}} \) takes the average uniformly over the sphere \(S_d(\tau) \).

When \(\delta = 0 \), which implies \(\tau = 0 \), the expansion in Theorem 5 reduces to that in Theorem 3.

When \(h = h^*_{\text{SEE}} \), it follows from Theorem 3 that

\[
P_{\beta_0}(S_n > c_{\alpha}) = 1 - G_d(c_{\alpha}) - C'^+ G_d'(d+2)(c_{\alpha})h^*_{\text{SEE}} + o(h^*_{\text{SEE}})
= \alpha - C'^+ G_d'(d+2)(c_{\alpha})h^*_{\text{SEE}} + o(h^*_{\text{SEE}}).
\]

To remove the error in rejection probability of order \(h^*_{\text{SEE}} \), we make a correction to the critical value \(c_{\alpha} \). Let \(c^*_{\alpha} \) be a high-order corrected critical value such that \(P_{\beta_0}(S_n > c^*_{\alpha}) = \alpha + o(h^*_{\text{SEE}}) \).

Simple calculation shows that

\[
c^*_{\alpha} = c_{\alpha} - \frac{G_d'(d+2)(c_{\alpha})}{G_d'(d)} C'^+ h^*_{\text{SEE}}
\]

meets the requirement.
To approximate the size-adjusted power of the S_n test, we use c^*_α rather than c_{α} because c^*_α leads to a more accurate test in large samples. Using Theorem 5, we can prove the following corollary.

Corollary 6. Let the assumptions in Theorem 5 hold. Then for $h = h^*_\text{SEE}$,

$$E_{\hat{\beta}_n}(S_n > c^*_\alpha) = 1 - G_d(c_{\alpha}; \tau^2) + Q_d(c_{\alpha}, \tau^2, r) \text{tr}(E(AA')) h^*_\text{SEE} + O(h^2_{\text{SEE}} + n^{-1/2}),$$

where

$$Q_d(c_{\alpha}, \tau^2, r) = \left(1 - \frac{1}{2r}\right) \left[G_d(c_{\alpha}; \tau^2) \frac{G'_{d+2}(c_{\alpha})}{G_d'(c_{\alpha})} - G'_{d+2}(c_{\alpha}; \tau^2) \right]$$

$$- \frac{1}{d} \left[G'_{d+4}(c_{\alpha}; \tau^2) - G'_{d+2}(c_{\alpha}; \tau^2) \right] \tau^2.$$

In the asymptotic expansion of the local power function in (8), $1 - G_d(c_{\alpha}; \tau^2)$ is the usual first-order power of a standard chi-square test. The next term of order $O(h^2_{\text{SEE}})$ captures the effect of smoothing the estimating equations. To sign this effect, we plot the function $Q_d(c_{\alpha}, \tau^2, r)$ against τ^2 for $r = 2$, $\alpha = 10\%$, and different values of d in Figure 1. Figures for other values of r and α are qualitatively similar. The range of τ^2 considered in Figure 1 is relevant as the first-order local asymptotic power, i.e., $1 - G_d(c_{\alpha}; \tau^2)$, increases from 10% to about $94\%, 96\%, 97\%$, and 99%, respectively for $d = 1, 2, 3, 4$. It is clear from this figure that $Q_d(c_{\alpha}, \tau^2, r) > 0$ for any $\tau^2 > 0$. This indicates that smoothing leads to a test with improved power. The power improvement increases with r. The smoother the conditional PDF of U in a neighborhood of the origin is, the larger the power improvement is.
5. MSE of the Parameter Estimator

In this section, we examine the approximate MSE of the parameter estimator. The approximate MSE, being a Nagar-type approximation \(^\text{Nagar, 1959}\), can be motivated from the theory of optimal estimating equations, as presented in \(^\text{Heyde (1997)}\), for example.

The SEE estimator \(\hat{\beta}\) satisfies \(m_n(\hat{\beta}) = 0\). In Lemma 9 in the appendix, we show that

\[
\sqrt{n}(\hat{\beta} - \beta_0) = -\left\{ E \frac{\partial}{\partial \beta^*} \frac{1}{\sqrt{n}} m_n(\beta_0) \right\}^{-1} m_n + O_p\left(\frac{1}{\sqrt{n}h} \right) \tag{9}
\]

and

\[
E \frac{\partial}{\partial \beta^*} \frac{1}{\sqrt{n}} m_n(\beta_0) = E[Z_j\beta^* f_{0\mid Z,j}(0 \mid Z_j) + O(h^r)]. \tag{10}
\]

Consequently, the approximate MSE (AMSE) of \(\sqrt{n}(\hat{\beta} - \beta_0)\) is

\[
\text{AMSE}_{\beta} = \left\{ E \frac{\partial}{\partial \beta^*} \frac{1}{\sqrt{n}} m_n(\beta_0) \right\}^{-1} \left(E m_n m_n^* \right) \left\{ E \frac{\partial}{\partial \beta^*} \frac{1}{\sqrt{n}} m_n(\beta_0) \right\}^{-1} = \Sigma^{-1}_{ZX} V^{1/2} \Sigma^{-1} V^{1/2} \Sigma^{-1} \Sigma_{ZX},
\]

where

\[
\Sigma_{ZX} = E[Z_j\beta^* f_{0\mid Z,j}(0 \mid Z_j, X_j)] \quad \text{and} \quad \Sigma_{XZ} = \Sigma_{XZ}^*.
\]

The first term of \(\text{AMSE}_{\beta}\) is the asymptotic variance of the unsmoothed QR estimator. The second term captures the higher-order effect of smoothing on the AMSE of \(\sqrt{n}(\hat{\beta} - \beta_0)\). When \(nh^r \rightarrow \infty \) and \(n^3h^{4r+1} \rightarrow \infty\), we have \(h^r = o(nh^{2r})\) and \(1/\sqrt{n}h = o(nh^{2r})\), so the terms of order \(O_p(1/\sqrt{n}h)\) \(\text{AMSE}_{\beta}\) and of order \(O(h^r)\) in (9) and of order \(O(h^r)\) in (10) are of smaller order than the \(O(nh^{2r})\) and \(O(h)\) terms in the AMSE. If \(h \asymp n^{-1/(2r-1)}\) as before, these rate conditions are satisfied when \(r > 2\).

\textbf{Theorem 7.} Let Assumptions 1-4(i-ii), 6 and 7 hold. If \(nh^r \rightarrow \infty \) and \(n^3h^{4r+1} \rightarrow \infty\), then the AMSE of \(\sqrt{n}(\hat{\beta} - \beta_0)\) is

\[
\Sigma^{-1}_{ZX} V^{1/2} [I_d + nh^{2r}(EB)(EB)^\prime - hE(\hat{A}\hat{A}^\prime)] (V^{1/2})^\prime (\Sigma_{ZX})^{-1} + O(h^r) + o(h + nh^{2r}).
\]

The optimal \(h^*\) that minimizes the high-order AMSE satisfies

\[
\Sigma^{-1}_{ZX} [n(h^*)^{2r}(EB)(EB)^\prime - h^*E(\hat{A}\hat{A}^\prime)] (\Sigma_{ZX})^{-1}
\leq \Sigma^{-1}_{ZX} [nh^{2r}(EB)(EB)^\prime - hE(\hat{A}\hat{A}^\prime)] (\Sigma_{ZX})^{-1}
\]

\(^5\text{Here we follow a common practice in the estimation of nonparametric and nonlinear models and define the AMSE to be the MSE of } \sqrt{n}(\hat{\beta} - \beta_0) \text{ after dropping some smaller-order terms. So the asymptotic MSE we define here is a Nagar-type approximate MSE. See } \text{Nagar (1959).}\)
in the sense that the difference between the two sides is nonpositive definite for all \(h \). This is equivalent to

\[
\begin{align*}
n(h^*)^{2r}(EB)(EB)' - h^*E(\lambda A') & \leq nh^{2r}(EB)(EB)' - hE(\lambda A').
\end{align*}
\]

This choice of \(h \) can also be motivated from the theory of optimal estimating equations. Given the estimating equations \(m_n = 0 \), we follow [Heyde 1997] and define the standardized version of \(m_n \) by

\[
m_n^\ast(\beta_0, h) = -E\frac{\partial}{\partial \beta'}m_n(\beta_0)\left[E(m_n m_n')\right]^{-1}m_n.
\]

We include \(h \) as an argument of \(m_n^\ast \) to emphasize the dependence of \(m_n^\ast \) on \(h \). The standardization can be motivated from the following considerations. On one hand, the estimating equations need to be close to zero when evaluated at the true parameter value. Thus we want \(E(m_n m_n') \) to be as small as possible. On the other hand, we want \(m_n(\beta + \delta \beta) \) to differ as much as possible from \(m_n(\beta) \) when \(\beta \) is the true value. That is, we want \(E\frac{\partial}{\partial \beta}m_n(\beta_0) \) to be as large as possible. To meet these requirements, we choose \(h \) to maximize

\[
E\{m_n^\ast(\beta_0, h)[m_n^\ast(\beta_0, h)]'\} = \left[E\frac{\partial}{\partial \beta'}m_n(\beta_0)\left[E(m_n m_n')\right]^{-1}E\frac{\partial}{\partial \beta}m_n(\beta_0)\right]' \cdot
\]

More specifically, \(h^\ast \) is optimal if

\[
E\{m_n^\ast(\beta_0, h^\ast)[m_n^\ast(\beta_0, h^\ast)]'\} - E\{m_n^\ast(\beta_0, h)[m_n^\ast(\beta_0, h)]'\}
\]

is nonnegative definite for all \(h \in \mathbb{R}^+ \). But \(E\{m_n^\ast(m_n^\ast)\}' = (AMSE_\beta)^{-1} \), so maximizing \(E\{m_n^\ast(m_n^\ast)\}' \) is equivalent to minimizing AMSE_\beta.

The question is whether such an optimal \(h \) exists. If it does, then the optimal \(h^\ast \) satisfies

\[
h^\ast = \arg\min_h u'[nh^{2r}(EB)(EB)' - hE(\lambda A')\]u
\]

for all \(u \in \mathbb{R}^d \), by the definition of nonpositive definite plus the fact that the above yields a unique minimizer for any \(u \). Using unit vectors \(e_1 = (1, 0, \ldots, 0), e_2 = (0, 1, 0, \ldots, 0) \), etc., for \(u \), and noting that \(\text{tr}\{A\} = e_1' Ae_1 + \cdots + e_d' Ae_d \) for \(d \times d \) matrix \(A \), this implies that

\[
h^\ast = \arg\min_h \text{tr}\{nh^{2r}(EB)(EB)' - hE(\lambda A')\} = \arg\min_h [nh^{2r}(EB)'(EB) - h\text{tr}\{E(\lambda A')\}].
\]

In view of (5), \(h_{\text{SEE}}^\ast = h^\ast \) if \(h^\ast \) exists. Unfortunately, it is easy to show that no single \(h \) can minimize the objective function in (11) for all \(u \in \mathbb{R}^d \). Thus, we have to redefine the optimality with respect to the direction of \(u \). The direction depends on which linear combination of \(\beta \) is the focus of interest, as \(u'[nh^{2r}(EB)(EB)' - hE(\lambda A')]u \) is the high-order AMSE of \(c \sqrt{n}(\beta - \beta_0) \) for \(c = \Sigma_{XZ}(V^{-1/2})'u \).
Suppose we are interested in only one linear combination. Let \(h_c^* \) be the optimal \(h \) that minimizes the high-order AMSE of \(c' \sqrt{n}(\hat{\beta} - \beta_0) \). Then

\[
h_c^* = \left(\frac{u' E(\mathcal{A} \mathcal{A}') u}{u' (E E)' u} \right)^{1/2 - 1/2} \frac{1}{2 n r}
\]

for \(u = (V^{1/2})' \Sigma_{X Z}^{-1} c \). Some algebra shows that

\[
h_c^* \geq \left(\frac{1}{(E E)' (E \mathcal{A} \mathcal{A}')^{-1} E E} \right)^{1/2 - 1/2} > 0.
\]

So although \(h_c^* \) depends on \(c \) via \(u \), it is nevertheless greater than zero.

Now suppose without loss of generality we are interested in \(d \) directions \((c_1, \ldots, c_d) \) jointly where \(c_i \in \mathbb{R}^d \). In this case, it is reasonable to choose \(h_{c_1, \ldots, c_d}^* \) to minimize the sum of direction-wise AMSEs, i.e.

\[
h_{c_1, \ldots, c_d}^* = \arg \min_h \sum_{i=1}^d u_i' \left[n h^{2r} (E E)' - h E(A A') \right] u_i,
\]

where \(u_i = (V^{1/2})' \Sigma_{X Z}^{-1} c_i \). It is easy to show that

\[
h_{c_1, \ldots, c_d}^* = \left(\frac{\sum_{i=1}^d u_i' E(\mathcal{A} \mathcal{A}') u_i}{\sum_{i=1}^d u_i' (E E)' u_i} \right)^{1/2 - 1/2} \frac{1}{2 n r}.
\]

As an example, consider \(u_i = e_i = (0, \ldots, 1, \ldots, 0) \), the \(i \)th unit vector in \(\mathbb{R}^d \). Correspondingly

\[
(h_{c_1, \ldots, c_d}^*, e_d) = \Sigma_{X Z} (V^{-1/2})' (e_1, \ldots, e_d).
\]

It is clear that

\[
h_{c_1, \ldots, c_d}^* = h_{\text{SEE}}^* = h_{\text{CPE}}^*,
\]

so all three selections coincide with each other. A special case of interest is when \(Z = X \), non-constant regressors are pairwise independent and normalized to mean zero and variance one, and \(U \perp X \). Then \(u_i = c_i = e_i \) and the \(d \) linear combinations reduce to the individual elements of \(\beta \).

The above example illustrates the relationship between \(h_{c_1, \ldots, c_d}^* \) and \(h_{\text{SEE}}^* \). While \(h_{c_1, \ldots, c_d}^* \) is tailored toward the flexible linear combinations \((c_1, \ldots, c_d) \) of the parameter vector, \(h_{\text{SEE}}^* \) is tailored toward the fixed \((\tilde{c}_1, \ldots, \tilde{c}_d) \). While \(h_{c_1, \ldots, c_d}^* \) and \(h_{\text{SEE}}^* \) are of the same order of magnitude, in general there is no analytic relationship between \(h_{c_1, \ldots, c_d}^* \) and \(h_{\text{SEE}}^* \).

To shed further light on the relationship between \(h_{c_1, \ldots, c_d}^* \) and \(h_{\text{SEE}}^* \), let \(\{\lambda_k, k = 1, \ldots, d\} \) be the eigenvalues of \(n h^{2r} (E E)' - h E(A A') \) with the corresponding orthonormal eigenvectors \(\{\ell_k, k = 1, \ldots, d\} \). Then we have \(n h^{2r} (E E)' - h E(A A') = \sum_{k=1}^d \lambda_k \ell_k \ell_k' \) and
\[u_i = \sum_{j=1}^{d} u_{ij}\ell_j \] for \(u_{ij} = u'_{ij}\ell_j \). Using these representations, the objective function underlying \(h^*_{c_1,...,c_d} \) becomes

\[
\sum_{i=1}^{d} u_i^t \left[nh^{2r}(EB) (EB)'^t - hE(AA') \right] u_i = \sum_{i=1}^{d} \left(\sum_{j=1}^{d} u_{ij}\ell_j \right) \left(\sum_{k=1}^{d} \lambda_k\ell_k \ell_k' \right) \left(\sum_{j=1}^{d} u_{ij}\ell_j' \right) = \sum_{j=1}^{d} \left(\sum_{i=1}^{d} u_{ij}^2 \right) \lambda_j.
\]

That is, \(h^*_{c_1,...,c_d} \) minimizes a weighted sum of the eigenvalues of \(nh^{2r}(EB)(EB)' - hE(AA') \) with weights depending on \(c_1, \ldots, c_d \). By definition, \(h^*_{\text{SEE}} \) minimizes the simple unweighted sum of the eigenvalues, viz. \(\sum_{j=1}^{d} \lambda_j \). While \(h^*_{\text{SEE}} \) may not be ideal if we know the linear combination(s) of interest, it is a reasonable choice otherwise.

In empirical applications, we can estimate \(h^*_{c_1,...,c_d} \) using a parametric plug-in approach similar to our plug-in implementation of \(h^*_{\text{SEE}} \). If we want to be agnostic about the directional vectors \(c_1, \ldots, c_d \), we can simply use \(h^*_{\text{SEE}} \).

6. Simulations

For our simulation study\(^6\) we use

\[
G(u) = 0.5 + \frac{105}{64} \left(u - \frac{5}{3}u^3 + \frac{7}{5}u^5 - \frac{3}{7}u^7 \right) \text{ for } u \in [-1, 1],
\]

\(G(u) = 1 \) for \(u > 1 \), \(G(u) = 0 \) for \(u < -1 \), as in Horowitz [1998] and Whang [2006]. This satisfies Assumption 4 with \(r = 4 \). Using (the integral of) an Epaneˇcnikov kernel with \(r = 2 \) also worked well in the cases where we tried it, though never better than \(r = 4 \). Note that our error distributions always have at least four derivatives, so \(r = 4 \) working somewhat better is expected. Selection of optimal \(r \) and \(G(\cdot) \), and the quantitative impact thereof, remain open questions.

We implement a plug-in version of the infeasible \(h^* \equiv h^*_{\text{SEE}} \). We make the plug-in assumption \(U \perp\!\!\!\!\perp Z \) and parameterize the distribution of \(U \). Our current method, which has proven quite accurate and stable, fits the residuals from an initial \(h = (2nr)^{-1/(2r-1)} \) IV-QR to Gaussian, \(t \), gamma, and generalized extreme value distributions via maximum likelihood. With the distribution parameter estimates, \(f_U(0) \) and \(f_U^{(r-1)}(0) \) can be computed and plugged in to calculate \(\hat{h} \). Since the biggest risk is taking an \(h \) that is too large, we separately calculate \(\hat{h} \) for each of the four distributions and take the smallest. Note that this particular plug-in approach works well even under heteroskedasticity and/or misspecification of the error distribution: settings 3.1-3.6 have error distributions other than these four, and settings 1.3, 2.2,

\(^6\text{MATLAB functions for public use are available on the first author’s website. MATLAB code for the simulations is available upon request.}\)
3.3-3.6 are heteroskedastic. For the infeasible h^*, if the PDF derivative in the denominator is zero, it is replaced by 0.01 to avoid $h^* = \infty$.

For the unsmoothed IV-QR estimator, we use code based on Chernozhukov and Hansen (2006) from the latter author’s website, for reasons given in their §3.3. We use the option to let their code determine the grid of possible endogenous coefficient values from the data. This code in turn uses the interior point method in rq.m (developed by Roger Koenker, Daniel Morillo, and Paul Eilers) to solve exogenous QR linear programs, as do we.

We tried data generating processes (DGPs) with homoskedasticity and heteroskedasticity, and with a variety of error distributions like Gaussian, Cauchy, exponential, and beta (of various shapes). Using \hat{h} appears to consistently reduce the MSE of all estimator components compared with $h = 0$ and with IV ($h = \infty$). Almost always, the exception is cases where MSE is monotonically decreasing with h (mean regression is more efficient), in which \hat{h} is much better than $h = 0$ but not quite large enough to match $h = \infty$. The range of \hat{h} values over the simulation replications is usually less than a factor of 10, and the range from 0.05 to 0.95 empirical quantiles is around a factor of two. This is a very small impact—note the log transformation in the x-axis in the graphs.

For “size-adjusted” power of a test with nominal size α, the critical value is picked as the $(1 - \alpha)$-quantile of the empirical test statistic distribution. This is for demonstration, not practice. The size adjustment fixes the left endpoint of the size-adjusted power curve to the null rejection probability α. The resulting size-adjusted power curve is one way to try to visualize a combination of type I and type II errors, in the absence of an explicit loss function. One shortcoming is that it does not reflect the variability/uniformity of size and power over the space of parameter values and DGPs.

Regarding notation in the figures, the vertical axis in the size-adjusted power figures shows the simulated rejection probability. The horizontal axis shows the magnitude of deviation from the null hypothesis, where a randomized alternative is generated in each simulation iteration as that magnitude times a random point on the unit sphere in \mathbb{R}^d, where $\beta \in \mathbb{R}^d$. As the legend shows, the dashed line corresponds to the unsmoothed estimator ($h = 0$), the dotted line to the infeasible h^*_{SEE}, and the solid line to the plug-in \hat{h}.

For the MSE graphs, the flat horizontal solid and dashed lines are the MSE of the intercept and slope estimators (respectively) using feasible plug-in \hat{h} (recomputed each replication). The other solid and dashed lines (that vary with h) are the MSE when using the value of h from the horizontal axis. The left vertical axis shows the MSE values for the intercept parameter; the right vertical axis shows the MSE for slope parameter(s); and the horizontal axis shows a log transformation of the bandwidth, $\log_{10}(1 + h)$.

To save space, we report the following representative DGPs with 10,000 simulation replications each. Others produced very similar results. DGPs 1.* are the three from Horowitz (1998); 2.* are similar but with Cauchy errors and $q \neq 0.5$; 3.* include more error distributions; and 4.* are IV-QR. A qualitative description of the results is provided for each,
and corresponding figures are noted when reproduced here. “SAP” below is “size-adjusted power.” “Better” means \(\hat{h} \) is better than \(h = 0 \); “worse” means \(\hat{h} \) is worse than \(h = 0 \). “Percentage point(s)” is abbreviated “pp”.

1.1 DGP: (homoskedastic, thicker-tailed, \(Z = X \)) \(q = 0.5, n = 50, \beta_0 = (1, 1)' \), errors from \(t_3 \) scaled to have variance two, non-constant regressor is Uniform(1,5). From Horowitz (1998). MSE: better than \(h = 0 \) and OLS for both intercept and slope; Figure 2. SAP: almost identical; Figure 3.

1.2 DGP: (homoskedastic, EV1, \(Z = X \)) \(q = 0.5, n = 50, \beta_0 = (1, 1)' \), errors from Type I Extreme Value scaled/centered to have median zero and variance two, non-constant regressor is Uniform(1,5). From Horowitz (1998). MSE: better than \(h = 0 \) and OLS for both intercept and slope. SAP: a few pp better.
1.3 DGP: (heteroskedastic, thin-tailed, $Z = X$) $q = 0.5$, $n = 50$, $\beta_0 = (1, 1)'$, errors $U = 0.25(1 + x)V$ where $V \sim N(0, 1)$ and $x \sim \text{Uniform}(1, 5)$ is the non-constant regressor. From [Horowitz (1998)]. MSE: better than $h = 0$ for both intercept and slope; better than OLS for intercept, same for slope; Figure 2. SAP: a few pp better; Figure 3.

2.1 DGP: (homoskedastic, thick-tailed, $Z = X$) $q = 0.3$, $n = 50$, $\beta_0 = (1, 1)'$, Cauchy errors, non-constant regressor is Uniform(0, 1). MSE: better than $h = 0$ and OLS; Figure 4. SAP: almost identical; Figure 5.

2.2 DGP: (heteroskedastic, thick-tailed, $Z = X$) $q = 0.35$, $n = 50$, $\beta_0 = (1, 1)'$, error $U = (1 + x)V$ where V is a Cauchy (shifted to have 0.35-quantile equal to zero) and $x \sim \text{Uniform}(0, 1)$ is the non-constant regressor. MSE: better than $h = 0$ and OLS; Figure 4. SAP: a few pp better; Figure 5.

Figure 4. MSE for DGPs 2.1 (left) and 2.2 (right).

3.1 DGP: (homoskedastic, uniform, $Z = X$, $d = 3$) $q = 0.5$, $n = 50$, $\beta_0 = (1, 1, 1)'$, uniform errors, $X = (1, x_1, x_2)'$ where $x_1 \sim \text{Unif}(-5, 5)$, $x_2 \sim \text{Unif}(5, 15)$. MSE: better than $h = 0$, worse than OLS; SAP: up to ten pp better.

3.2 DGP: Same as 3.1 but lognormal errors. MSE: \hat{h} better than $h = 0$ and OLS. SAP: a few pp better over small range.

3.3 DGP: (heteroskedastic, uniform, $Z = X$) $q = 0.25$, $n = 50$, $\beta_0 = (1, 1)'$, $U = (1 + x)V$ where V is uniform and $x \sim \text{Unif}(0, 1)$ is non-constant regressor. MSE: better than $h = 0$ and OLS; Figure 6. SAP: a few pp better.

3.4 DGP: (heteroskedastic, beta, $Z = X$) $q = 0.35$, $n = 50$, $\beta_0 = (1, 1)'$, $U = (1 + x)V$ where V is a (shifted) $\beta(2, 2)$ and $x \sim \text{Uniform}(0, 1)$ is the non-constant regressor. MSE: better than $h = 0$; better than OLS for intercept, same for slope. SAP: around 5pp better.

3.5 DGP: same as 3.4 but $\beta(1/2, 1/2)$ (U-shaped PDF), $n = 25$. MSE: better than $h = 0$; better than OLS for intercept, worse for slope. SAP: a few pp better.
3.6 DGP: same as 3.5 but $\beta(2,5)$ (skewed right). MSE: better than $h=0$ and OLS; Figure 6. SAP: a few pp better.

4.1 DGP: (normal, IV) $q=0.5$, $n=20$, $\beta_0=(0,1)'$. Simulated using reduced form equations in Cattaneo et al. (2012, equation 2) with $\gamma_1=\gamma_2=1$, $x_i=1$, $z_i \sim N(0,1)$, and $\pi=0.5$. Similar to their simulations, we set $\rho=0.5$, $(\tilde{\nu}_{1i},\tilde{\nu}_{2i})$ iid $N(0,1)$, and $(v_{1i},v_{2i})'=(\tilde{\nu}_{1i},\sqrt{1-\rho^2}\tilde{\nu}_{2i}+\rho\tilde{v}_{1i})'$. MSE: regular MSE (not shown) is around 10 for \hat{h} and around 100 for $h=0$ and IV, due to “outlier” draws in a few percent of the simulation replications where both $h=0$ and IV yield estimates far from β_0. In those draws, h is very large (but not to the point of equivalence with IV), in a range where there is significant bias but small enough variance to keep the estimates relatively close to β_0. With the “robust MSE” described in the figure caption, \hat{h}

Figure 5. Size-adjusted power for DGPs 2.1 (left) and 2.2 (right).

Figure 6. MSE for DGPs 3.3 (left) and 3.6 (right).
performs better than \(h = 0 \) and worse than IV; Figure 7. SAP: up to 10pp better; Figure 9.

4.2 DGP: (Cauchy, IV) Similar to 4.1 but with \(n = 250 \), \((\tilde{v}_{1i}, \tilde{v}_{2i})'\) iid Cauchy, \(\beta_0^{(2)} = [\rho - \sqrt{1 - \rho^2}]^{-1} \) so that the structural error \(u_i = v_{1i} - v_{2i}/\beta \) is Cauchy with standard deviation \(2[1 - \rho/(\rho - \sqrt{1 - \rho^2})] \). MSE: regular MSE (not shown) is in the hundred thousands for \(\hat{h} \), similar for IV, and around \(10^{11} \) for \(h = 0 \), due to “outlier” draws similar to discussed for DGP 4.1. With the “robust MSE” described in the figure caption, \(\hat{h} \) is better than \(h = 0 \) and IV; Figure 7. SAP: a few pp worse.

4.3 DGP: (normal, IV) Same as 4.1 but \(q = 0.35 \) (and consequent re-centering of error term), \(n = 30 \). MSE: better than \(h = 0 \) for slope, same for intercept; better than IV for intercept, worse for slope; Figure 8. SAP: over 5pp better; Figure 9.

With the infeasible \(h^* \), there is usually some gain in size-adjusted power because the estimator is more precise. With a feasible \(h^* \), this gain is in the 1–10 percentage point range for exogenous models \((Z = X) \), though can be larger for IV setups. Depending on one’s loss function of type I and type II error, this test may be preferred or not.

7. Conclusion

We have presented a new estimator for quantile regression with or without instrumental variables. Smoothing the estimating equations (moment conditions) has multiple advantages beyond the known advantage of allowing higher-order expansions. It can reduce the MSE of both the estimating equations and the parameter estimator, minimize type I error and improve size-adjusted power of a chi-square test, and allow more reliable computation of the instrumental variables quantile regression estimator especially when the number of endogenous regressors is larger. We have given the theoretical bandwidth that optimizes these
properties, and simulations show our plug-in bandwidth to reproduce all these advantages over the unsmoothed estimator. Links to mean instrumental variables regression and robust estimation are insightful and of practical use.

The strategy of smoothing the estimating equations can be applied to any model with non-smooth estimating equations; there is nothing peculiar to the quantile regression model that we have exploited. For example, this strategy could be applied to censored quantile regression, or to select the optimal smoothing parameter in Horowitz’s (2002) smoothed maximum score estimator. The present paper has focused on parametric and linear IV quantile regression; extensions to nonlinear IV quantile regression and nonparametric IV quantile regression along the lines of Chen and Pouzo (2009, 2012) are currently under development.
References

Proof of Theorem 1

First moment of W_j. Let $[U_L(z), U_H(z)]$ be the support of the conditional PDF of U given $Z = z$. Since $P(U_j < 0 \mid Z_j) = q$ for almost all Z_j and $h \to 0$, we can assume without loss of generality that $U_L(Z_j) \leq -h$ and $U_H(Z_j) \geq h$ for almost all Z_j. For some $\hat{h} \in [0, h]$, we have

$$
E(W_j) = E\{Z_j[G(-U_j/h) - q] \} = E\left\{ \left(\int_{U_L(Z_j)}^{U_H(Z_j)} [G(-u/h) - q]dF_{U|Z}(u \mid Z_j) \right) Z_j \right\}
$$

$$
= E\left[\left([G(-u/h) - q]F_{U|Z}(u \mid Z_j) \right)_{U_L(Z_j)}^{U_H(Z_j)} + \frac{1}{h} \int_{U_L(Z_j)}^{U_H(Z_j)} F_{U|Z}(u \mid Z_j)G'(-u/h)du \right] Z_j
$$

$$
= E\left\{ -q + \int_{-1}^{1} F_{U|Z}(hv \mid Z_j)G'(v)dv \right\} Z_j \quad \text{(since $G'(v) = 0$ for $v \notin [-1, 1]$)}
$$

$$
= E\left\{ -q + F_{U|Z}(0 \mid Z_j) + \int_{-1}^{1} \left(\sum_{k=1}^{r} f^{(k-1)}_{U|Z}(0 \mid Z_j) \frac{(-h)^k v^k}{k!} \right) G'(v)dv \right\} Z_j
$$

$$
+ E\left\{ \int_{-1}^{1} f^{(r)}_{U|Z}(hv \mid Z_j)G'(v)dv \right\} Z_j \frac{(-h)^{r+1}}{(r+1)!}
$$

$$
= \frac{(-h)^{r}}{r!} \left(\int_{-1}^{1} G'(v)v^r dv \right) E\left[f^{(r-1)}_{U|Z}(0 \mid Z_j)Z_j \right]
$$

$$
+ E\left\{ \int_{-1}^{1} f^{(r)}_{U|Z}(hv \mid Z_j)G'(v)dv \right\} Z_j O(h^{r+1}).
$$

Under Assumption 3 for some bounded $C(\cdot)$ we have

$$
\left\| E\left\{ \int_{-1}^{1} f^{(r)}_{U|Z}(hv \mid Z_j)G'(v)dv \right\} Z_j \right\|
$$

$$
\leq E\left\{ \int_{-1}^{1} C(Z)\|Z\||v^r G'(v)|dv \right\} = O(1).
$$

Hence

$$
E(W_j) = \frac{(-h)^{r}}{r!} \left(\int_{-1}^{1} G'(v)v^r dv \right) E\left[f^{(r-1)}_{U|Z}(0 \mid Z_j)Z_j \right] + o(h^r).
$$

Second moment of W_j. For the second moment,

$$
EW_j^2 W_j = E\{ [G(-U_j/h) - q]^2 Z_j^2 \}
$$

$$
= E\left\{ \left(\int_{U_L(Z_j)}^{U_H(Z_j)} [G(-u/h) - q]^2 dF_{U|Z}(u \mid Z_j) \right) Z_j^2 \right\}.
$$
Integrating by parts and using Assumption 3(i) in the last line yields:

\[
\int_{U_L(Z_j)}^{U_H(Z_j)} [G(-u/h) - q]^2 dF_{U|Z}(u \mid Z_j) \\
= [G(-u/h) - q]^2 F_{U|Z}(u \mid Z_j)\big|_{U_L(Z_j)}^{U_H(Z_j)} + \frac{2}{h} \int_{U_L(Z_j)}^{U_H(Z_j)} F_{U|Z}(u \mid Z_j)[G(-u/h) - q]G'(-u/h)du \\
= q^2 + 2 \int_{-1}^{1} F_{U|Z}(hv \mid Z_j)[G(-v) - q]G'(-v)dv \quad \text{(since } G'(v) = 0 \text{ for } v \notin [-1, 1]) \\
= q^2 + 2q \left\{ \int_{-1}^{1} [G(-v) - q]G'(-v)dv \right\} + 2hf_{U|Z}(0 \mid Z_j) \left\{ \int_{-1}^{1} v[G(-v) - q]G'(-v)dv \right\} \\
+ \left\{ \int_{-1}^{1} v^2 f'_{U|Z}(hv \mid Z_j)[G(-v) - q]G'(-v)dv \right\} h^2.
\]

But

\[
2 \int_{-1}^{1} [G(-v) - q]G'(-v)dv = \int_{-1}^{1} 2[G(u) - q]G'(u)du \\
= \left[G^2(u) - 2qG(u) \right]_{-1}^{1} = 1 - 2q, \\
2 \int_{-1}^{1} v[G(-v) - q]G'(-v)dv = -2 \int_{-1}^{1} u[G(u) - q]G'(u)du \\
= -2 \int_{-1}^{1} uG(u)G'(u)du = -\left\{ uG^2(u) \right\}_{-1}^{1} - \int_{-1}^{1} G^2(u)du \right\} \\
= - \left(1 - \int_{-1}^{1} G^2(u)du \right) \quad \text{(by Assumption 4(ii))},
\]

and

\[
\left| \int_{-1}^{1} v^2 f'_{U|Z}(hv \mid Z_j)[G(-v) - q]G'(-v)dv \right| \leq \int_{-1}^{1} C(Z_j)|v^2G'(v)|dv
\]

for some function \(C(\cdot) \). So

\[
E(W_j'W_j) \\
= E\left\{ q^2 + q(1 - 2q) - hf_{U|Z}(0 \mid Z_j) \left[1 - \int_{-1}^{1} G^2(u)du \right] Z_j'Z_j \right\} + O(h^2) \\
= q(1 - q)E[Z_j'Z_j] - h \left[1 - \int_{-1}^{1} G^2(u)du \right] E[f_{U|Z}(0 \mid Z_j)Z_j'Z_j] + O(h^2).
\]

Similarly, we can show that

\[
E(W_jW_j') \\
= q(1 - q)E(Z_jZ_j') - h \left[1 - \int_{-1}^{1} G^2(u)du \right] E[f_{U|Z}(0 \mid Z_j)Z_jZ_j'] + O(h^2).
\]
First-order asymptotic distribution of m_n. We can write m_n as

$$m_n = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} W_j = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} (W_j - EW_j) + \sqrt{n} EW_j. \quad (12)$$

In view of the mean of W_j, we have $\sqrt{n} EW_j = O(h^r \sqrt{n}) = o(1)$ by Assumption 5. So the bias is asymptotically (first-order) negligible. Consequently, the variance of W_j is $E(W_jW_j') + o(1)$, so the first-order term from the second moment calculation above can be used for the asymptotic variance.

Next, we apply the Lindeberg–Feller central limit theorem to the first term in (12), which is a scaled sum of a triangular array since the bandwidth in W_j depends on n. We consider the case when W_j is a scalar as vector cases can be handled using the Cramér–Wold device. Note that

$$\sigma_W^2 \equiv \text{Var} \left[\frac{1}{\sqrt{n}} \sum_{j=1}^{n} (W_j - EW_j) \right] = \frac{1}{n} \text{Var}(W_j - E(W_j)) \quad \text{(by iid Assumption 1)}$$

$$= EW_j^2 - (EW_j)^2 = q(1 - q) E[Z_j^2] (1 + o(1)).$$

For any $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \mathbb{E} \left[\frac{1}{\sqrt{n} \sigma_W} \left(\frac{|W_j - EW_j|}{\sqrt{n} \sigma_W} \right)^2 1\left\{ \frac{|W_j - EW_j|}{\sigma_W} \geq \sqrt{n} \varepsilon \right\} \right] = 0,$$

where the last equality follows from the dominated convergence theorem, as

$$\frac{(W_j - EW_j)^2}{\sigma_W^2} \left\{ \frac{|W_j - EW_j|}{\sigma_W} \geq \sqrt{n} \varepsilon \right\} \leq C \frac{Z_j^2 + E Z_j^2}{\sigma_W^2}$$

for some constant C and $EZ_j^2 < \infty$. So the Lindeberg condition holds and $m_n \xrightarrow{d} N(0, V)$.

Bias of estimating equations derived from smoothed criterion function. With the EE derived from smoothing the criterion function, using iterated expectations,

$$E\left[\{G(-U_j/h) - q|Z_j\} \right] - \frac{1}{h} E \left[U_j G'(U_j/h) Z_j \right]$$

$$= \frac{(-h)^r}{r!} \left(\int G'(v)v^r dv \right) E \left[f_U^{(r-1)}(0 \mid Z_j) Z_j \right] + o(h^r) - E \left[h \int vG'(v) f_U(Z_j - hv \mid Z_j) dv Z_j \right]$$

$$= \frac{(-h)^r}{r!} \left(\int G'(v)v^r dv \right) E \left[f_U^{(r-1)}(0 \mid Z_j) Z_j \right] + o(h^r)$$

$$- h \frac{(-h)^{r-1}}{(r-1)!} \left(\int G'(v)v^r dv \right) E \left[f_U^{(r-1)}(0 \mid Z_j) Z_j \right] + o(h^r)$$
\[(-h)^r \left(\frac{1}{r!} + \frac{1}{(r-1)!} \right) \left(\int G'(v)v^r\,dv \right) E\left[f_U^{(r-1)}(0 \mid Z_j)Z_j \right] + o(h^r). \]

Proof of Proposition 2 The first expression comes directly from the FOC. Under the assumption \(U \perp Z \), we have

\[h_{\text{SEE}}^* = \left(\frac{(rt)!^2}{2r} \int_{-1}^1 G'(v)v^r\,dv \right) \left[f_U^{(r-1)}(0) \right]^2 \left[(EZ')V^{-1}(EZ) \right]^{-1} \]

The simplified \(h_{\text{SEE}}^* \) then follows from the lemma below.

Lemma 8. If \(Z \in \mathbb{R}^d \) is a random vector with first element equal to one and \(V \equiv E(ZZ') \) is nonsingular, then

\[E(Z'V^{-1}Z)/[(EZ')V^{-1}(EZ)] = d. \]

Proof. For the numerator, rearrange using the trace:

\[E(Z'V^{-1}Z) = E[\text{tr}\{Z'V^{-1}Z\}] = E[\text{tr}\{V^{-1}ZZ'\}] = \text{tr}\{V^{-1}E(ZZ')\} = \text{tr}\{I_d\} = d. \]

For the denominator, let \(E(Z') = (1,t') \) for some \(t \in \mathbb{R}^{d-1} \). Since the first element of \(Z \) is one, the first row and first column of \(V \) are \(E(Z') \) and \(E(Z) \). Writing the other \((d-1) \times (d-1) \) part of the matrix as \(\Omega \),

\[V = E(ZZ') = \begin{pmatrix} 1 & t' \\ t & \Omega \end{pmatrix}. \]

We can read off \(V^{-1}E(Z) = (1,0,\ldots,0)' \) from the first column of the identity matrix since

\[V^{-1} \begin{pmatrix} 1 \\ t \end{pmatrix} = V^{-1} = I_d = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}. \]

Thus,

\[(EZ')V^{-1}(EZ) = (1,t')(1,0,\ldots,0)' = 1. \]

Proof of Theorem 3 Adding to the variables already defined in the main text, let

\[Z_j^* \equiv (EZ_jZ_j')^{-1/2}Z_j \text{ and } D_n \equiv n^{-1} \sum_{j=1}^n (Z_j^*Z_j'^* - EZ_j^*Z_j'^*) = \frac{1}{n} \sum_{j=1}^n Z_j^*Z_j'^* - I_d. \]

Then using the definition of \(\Lambda_n \) in [5], we have

\[\Lambda_n^{-1}V(\Lambda_n^{-1})' = n^{-1} \sum_{j=1}^n \Lambda_n^{-1}Z_j(\Lambda_n^{-1}Z_j)'q(1-q) \]

\[= (I_d - E(AA')h + O(h^2))^{-1/2} \left[\frac{1}{n} \sum_{j=1}^n Z_j^*Z_j'^* \right] (I_d - E(AA')h + O(h^2))^{-1/2} \]
\[
= (I_d - E(AA')h + O(h^2))^{-1/2} [I_d + D_n] (I_d - E(AA')h + O(h^2))^{-1/2}
\]
\[
= [I_d + (1/2)E(AA')h + O(h^2)] [I_d + D_n] [I_d + (1/2)E(AA')h + O(h^2)].
\]

Let \(\xi_n = (I_d + D_n)^{-1} - (I_d - D_n) = (I_d + D_n)^{-1} D_n^2 \), then
\[
\left[\Lambda_n^{-1} \hat{V} (\Lambda_n^{-1})' \right]^{-1}
= \left[I_d - \frac{1}{2} E(AA')h + O(h^2) \right] [I_d - D_n + \xi_n] \left[I_d - \frac{1}{2} E(AA')h + O(h^2) \right]
= I_d - E(AA')h + \eta_n,
\]
where \(\eta_n = -D_n + D_n O(h) + \xi_n + O(h^2) + \xi_n O(h) \) collects the remainder terms. To evaluate the order of \(\eta_n \), we start by noting that
\[
E\left(\|D_n\|^2 \right) = O(1/n).
\]
Let \(\lambda_{\min}(\cdot) \) and \(\lambda_{\max}(\cdot) \) be the smallest and largest eigenvalues of a matrix, then for any constant \(C > 2\sqrt{d} > 0 \):
\[
P\left\{ \left\| (I_d + D_n)^{-1} \right\| \geq C \right\} \leq P\left\{ \lambda_{\max}(I_d + D_n)^{-1} \geq C/\sqrt{d} \right\}
= P\left\{ \lambda_{\min}(I_d + D_n) \leq \sqrt{d}/C \right\} = P\left\{ 1 + \lambda_{\min}(D_n) \leq \sqrt{d}/C \right\}
= P(\lambda_{\min}(D_n) \leq -1/2) \leq P(\lambda_{\min}^2(D_n) > 1/4)
\leq P\left(\|D_n\|^2 > 1/4 \right) = O\left(\frac{1}{n} \right).
\]

by the Markov inequality. Using this probability bound and the Chernoff bound, we have for any \(\epsilon > 0 \),
\[
P\left\{ \frac{n}{\log n} \|\xi_n\| > \epsilon \right\} \leq P\left\{ \frac{n}{\log n} \|I_d + D_n\|^{-1} \times \|D_n\|^2 > \epsilon \right\}
= P\left\{ n\|D_n\|^2 > \epsilon \frac{\log n}{C} \right\} + P\left\{ \|I_d + D_n\|^{-1} \times C \right\} = O\left(\frac{1}{n} \right).
\]

It then follows that
\[
P\left\{ \|\eta_n\| \geq C \max\left(h^2, \sqrt{\frac{\log n}{n}}, h \sqrt{\frac{\log n}{n}}, \frac{\log n}{n}, \frac{h \log n}{n} \right) \right\} = O\left(\frac{1}{n} + h^2 \right).
\]

Under Assumption 5, we can rewrite the above as
\[
P\left\{ \|\eta_n\| \geq C h^2 / \log n \right\} = O(h^2)
\]
for any large enough constant \(C > 0 \).

Using (13) and defining \(W_j^* = \Lambda_n^{-1} Z_j G(-U_j/h) - q \), we have
\[
S_n = (\Lambda_n^{-1} m_n)' \Lambda_n^{-1} \hat{V} (\Lambda_n^{-1})' \Lambda_n (\Lambda_n^{-1} m_n)
= (\Lambda_n^{-1} m_n)' [\Lambda_n^{-1} \hat{V} (\Lambda_n^{-1})']^{-1} (\Lambda_n^{-1} m_n) = S_n^d + e_n
\]
where
\[
S_n^d = (\sqrt{n} W_n^*)' (\sqrt{n} W_n^*) - h (\sqrt{n} W_n^*)' E(AA') (\sqrt{n} W_n^*).
\]
\[e_n = (\sqrt{n}W^*_n)^\prime \eta_n(\sqrt{n}W^*_n), \]

and \(\bar{W}^*_n = n^{-1} \sum_{j=1}^n W^*_j \) as defined in \([7]\). Using the Chernoff bound on \(\sqrt{n}W^*_n \) and the result in \([14]\), we can show that \(P(|e_n| > Ch^2) = O(h^2) \). This ensures that we can ignore \(e_n \) to the order of \(O(h^2) \) in approximating the distribution of \(S_n \).

The characteristic function of \(S^*_L \) is

\[
E\{\exp(itS^*_L)\} = C_0(t) - hC_1(t) + O(h^2) \text{ where}
\]

\[
C_0(t) \equiv E\big\{\exp\left[i(t(\sqrt{n}W^*_n)^\prime(\sqrt{n}W^*_n))\right]\big\},
\]

\[
C_1(t) \equiv E\big\{it(\sqrt{n}W^*_n)^\prime(EAA^\prime)(\sqrt{n}W^*_n)\exp\left[it(\sqrt{n}W^*_n)^\prime(\sqrt{n}W^*_n)\right]\big\}.
\]

Following Phillips \((1982)\) and using arguments similar to those in Horowitz \((1998)\) and Whang \((2006)\), we can establish an expansion of the PDF of \(n^{-1/2} \sum_{j=1}^n (W^*_j - EW^*_j) \) in the form

\[
\text{pdf}(x) = (2\pi)^{-d/2} \exp(-x^2/2)[1 + n^{-1/2}p(x)] + O(n^{-1}),
\]

where \(p(x) \) is an odd polynomial in the elements of \(x \) of degree 3. When \(d = 1 \), we know from Hall \((1992)\) \S2.8 that

\[
p(x) = -\frac{\kappa_3}{6} \frac{1}{\phi(x)} \frac{d}{dx} \phi(x)(x^2 - 1) \quad \text{for} \quad \kappa_3 = \frac{E(W^*_j - EW^*_j)^3}{V_n^{-3/2}} = O(1).
\]

We use this expansion to compute the dominating terms in \(C_j(t) \) for \(j = 0, 1 \).

First,

\[
C_0(t) = E\big\{\exp\left[i(t(\sqrt{n}W^*_n)^\prime(\sqrt{n}W^*_n))\right]\big\}
\]

\[
= (2\pi)^{-d/2} \int \exp\left[i\left(t + \sqrt{n}EW^*_j\right)\prime\left(x + \sqrt{n}EW^*_j\right)\right] \exp\left(-\frac{1}{2}x^2\right) dx + O(n^{-1})
\]

\[
+ \frac{1}{\sqrt{n}} (2\pi)^{-d/2} \int \exp\left[i\left(t + \sqrt{n}EW^*_j\right)\prime\left(x + \sqrt{n}EW^*_j\right)\right] \frac{p(x)}{\phi(x)} \exp\left(-\frac{1}{2}x^2\right) dx
\]

\[
= (1 - 2it)^{-d/2} \exp\left(-\frac{\|\sqrt{n}EW^*_j\|^2}{1 - 2it} \right) + O(n^{-1})
\]

\[
+ \frac{1}{\sqrt{n}} (2\pi)^{-d/2} \int \frac{p(x)}{\phi(x)} \exp\left(-\frac{1}{2}x^2\right) \left(1 + it2x^\prime\sqrt{n}EW^*_j + O(n\|EW^*_j\|^2)\right) dx
\]

\[
= (1 - 2it)^{-d/2} \exp\left(-\frac{\|\sqrt{n}EW^*_j\|^2}{1 - 2it} \right) + O(\|EW^*_j\|^2 + \sqrt{n}h^2 + n^{-1})
\]

\[
= (1 - 2it)^{-d/2} \exp\left(-\frac{\|\sqrt{n}EW^*_j\|^2}{1 - 2it} \right) + O(h^r),
\]
where the third equality follows from the characteristic function of a noncentral chi-square distribution.

Second, for $C_1(t)$ we can put any $o(1)$ term into the remainder since $hC_1(t)$ will then have remainder $o(h)$. Noting that x is an odd function (of x) and so integrates to zero against any symmetric PDF,

$$C_1(t) = E\left\{ i\left(\sqrt{n}W_n\right)'E(AA')(\sqrt{n}W_n) \exp\left[i\left(\sqrt{n}W_n\right)'(\sqrt{n}W_n)\right] \right\}$$

$$= (2\pi)^{-d/2} \int i\left(\sqrt{n}EW_j\right)'E(AA')(\sqrt{n}EW_j)$$

$$\times \exp i\left(\sqrt{n}EW_j\right)'[x + \sqrt{n}EW_j] \exp\left(-\frac{1}{2}x'x\right) dx$$

$$\times \left(1 + O\left(\frac{1}{\sqrt{n}}\right)\right)$$

$$= (2\pi)^{-d/2} \int itx'E(AA')x \exp\left[-\frac{1}{2}x'x(1 - 2it)\right] dx + O\left(\|\sqrt{n}EW_j\|^2\right) + O\left(\|EW_j\|^2\right)$$

$$= (1 - 2it)^{-d/2}it(\text{tr}E(AA')EX) + O\left(\|\sqrt{n}EW_j\|^2\right) + O\left(\|EW_j\|^2\right)$$

$$= (1 - 2it)^{-d/2 - 1}it(\text{tr}E(AA')) + O\left(\|\sqrt{n}EW_j\|^2\right) + O\left(\|EW_j\|^2\right),$$

where $X \sim N(0, \text{diag}(1 - 2it))$.

Combining the above steps, we have, for $r \geq 2$,

$$E\left\{ \exp(itS^L_n) \right\} = (1 - 2it)^{-d/2} \exp\left(\frac{i\|\sqrt{n}EW_j\|^2}{1 - 2it}\right) - h(1 - 2it)^{-d/2 - 1}it\text{tr}\{E(AA')\}$$

$$\quad \quad + O\left(nh^{2r+1}\right) + O\left(h^2\right) + O(h^2)$$

$$= (1 - 2it)^{-d/2} + (1 - 2it)^{-d/2 - 1}it\left\{\|\sqrt{n}EW_j\|^2 - h(\text{tr}E(AA'))\right\}$$

$$\quad \quad + O(h^2 + nh^{2r+1}). \quad (15)$$

The χ^2_d characteristic function is $(1 - 2it)^{-d/2}$, and integrating by parts yields the Fourier–Stieltjes transform of the χ^2_d PDF:

$$\int_0^\infty \exp(itx)G'_d(x)dx = \int_0^\infty \exp(itx)G''_d(x)dx = \exp(itx)G'_d(x)\bigg|_0^\infty - \int_0^\infty (it)\exp(itx)G''_d(x)dx$$

$$= (-it)(1 - 2it)^{-d/2}.$$

Taking a Fourier–Stieltjes inversion of χ^2_d, thus yields

$$P(S^L_n < x) = G_d(x) - G'_d(x)\left\{\|\sqrt{n}EW_j\|^2 - h(\text{tr}E(AA'))\right\} + O(h^2 + nh^{2r+1})$$

$$= G_d(x) - G'_d(x)\left\{nh^{2r}(EB)'EB - h(\text{tr}E(AA'))\right\} + O(h^2 + nh^{2r+1}).$$
A direct implication is that type I error is
\[P(m'_n V^{-1} m_n > c_0) = \alpha + G'_d(2c_0) \{ nh^{2r}(EB)'(EB) - htr\{ \theta_0 \} \} + O(h^2 + nh^{2r+1}). \]

Proof of Theorem 5. Define
\[W_j \equiv W_j(\delta) \equiv Z_j \left[G \left(\frac{X'_j \delta}{\sqrt{n} h} - \frac{u}{h} \right) - q \right], \]
then
\[m_n(\beta_0) = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} W_j = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} W_j(\delta). \]

We first compute the mean of \(m_n(\beta_0) \). Let \([U_L(Z_j, X_j), U_H(Z_j, X_j)]\) be the support of \(U_j \) conditional on \(Z_j \) and \(X_j \). Using the same argument as in the proof of Theorem 1
\[Em_n(\beta_0) = \sqrt{n} E W_j = \sqrt{n} E Z_j \int_{U_L(Z_j, X_j)}^{U_H(Z_j, X_j)} \left[G \left(\frac{X'_j \delta}{\sqrt{n} h} - \frac{u}{h} \right) - q \right] dF_{U_{j \mid Z, X}}(u \mid Z_j, X_j) \]
\[= \sqrt{n} E Z_j \left[G \left(\frac{X'_j \delta}{\sqrt{n} h} - \frac{u}{h} \right) - q \right] F_{U_{j \mid Z, X}}(u \mid Z_j, X_j) \bigg|_{U_L(Z_j, X_j)}^{U_H(Z_j, X_j)} \]
\[+ \frac{\sqrt{n}}{h} E Z_j \int_{U_L(Z_j, X_j)}^{U_H(Z_j, X_j)} F_{U_{j \mid Z, X}}(u \mid Z_j, X_j) G' \left(\frac{X'_j \delta}{\sqrt{n} h} - \frac{u}{h} \right) du \]
\[= -\sqrt{n} E Z_j q + \sqrt{n} E Z_j \int_{-1}^{1} F_{U_{j \mid Z, X}} \left(\frac{X'_j \delta}{\sqrt{n}} - hv \mid Z_j, X_j \right) G'(v) dv \]
\[= \sqrt{n} E Z_j \left[F_{U_{j \mid Z, X}} \left(\frac{X'_j \delta}{\sqrt{n}} \mid Z_j, X_j \right) - q \right] \]
\[+ \frac{\sqrt{n}}{h} E \int_{-1}^{1} f^{(r-1)}_{U_{j \mid Z, X}} \left(\frac{X'_j \delta}{\sqrt{n}} \mid Z_j, X_j \right) \frac{(-h)^{r'} v^{r'}}{r!} G'(v) dv + O(\sqrt{n} h^{r+1}). \]

Expanding \(F_{U_{j \mid Z, X}} \left(\frac{X'_j \delta}{\sqrt{n}} \mid Z_j, X_j \right) \) and \(f^{(r-1)}_{U_{j \mid Z, X}} \left(\frac{X'_j \delta}{\sqrt{n}} \mid Z_j, X_j \right) \) at zero, and since \(r \) is even,
\[Em_n(\beta_0) = \sqrt{n} E Z_j \left[F_{U_{j \mid Z, X}}(0 \mid Z_j, X_j) - q \right] + E Z_j X'_j \delta f_{U_{j \mid Z, X}}(0 \mid Z_j, X_j) + O \left(\frac{1}{\sqrt{n}} \right) \]
\[+ \frac{h^r}{r!} \sqrt{n} E \left[Z_j f^{(r-1)}_{U_{j \mid Z, X}}(0 \mid Z_j, X_j) \right] \left(\int_{-1}^{1} v^{r} G'(v) dv \right) + O(\sqrt{n} h^{r+1} + h^r) \]
\[= E \left[f_{U_{j \mid Z, X}}(0 \mid Z_j, X_j) \right] Z_j X'_j \delta + \sqrt{n} h^{r} V^{1/2} E(B) + O \left(\frac{1}{\sqrt{n}} + \sqrt{n} h^{r+1} + h^r \right). \]

Here we have used the following extensions of the law of iterated expectation:
\[E \{ Z_j [F_{U_{j \mid Z, X}}(0 \mid Z_j, X_j) - q] \} = E \{ Z_j E [E(1 \{ U_j < 0 \} \mid Z_j, X_j) - q \mid Z_j] \} \]
\[= E \{ Z_j [F_{U \mid Z}(0 \mid Z_j) - q] \} = 0, \]
\[E[f_{U_{j \mid Z, X}}(u \mid Z, X) \mid Z = z] = \int_{x} f_{U_{j \mid Z, X}}(u \mid z, x) f_{X \mid Z}(x \mid z) dx \]
\[
\begin{align*}
&= \int \frac{f_{U,Z,X}(u,z,x)}{f_{Z,X}(z,x)} \frac{f_{Z,X}(z,x)}{f_Z(z)} dx = [f_Z(z)]^{-1} \int \frac{f_{U,Z,X}(u,z,x)}{f_{Z,X}(z,x)} dx \\
&= f_{U,Z}(u,z)/f_Z(z) = f_{U|Z}(u | z), \\
E[f_{U|Z,X}(0 | Z, X) g(Z)] &= E\{E[f_{U|Z,X}(0 | Z, X) g(Z) | Z]\} \\
&= E\{E[f_{U|Z,X}(0 | Z, X) | Z] g(Z)\} = E\{f_{U|Z}(0 | Z) g(Z)\},
\end{align*}
\]
and similarly for derivatives of the PDF by exchanging the order of differentiation and integration.

Next, we compute the variance \(V_n \) of \(m_n(\beta_0) \):

\[
V_n = \text{Var}[m_n(\beta_0)] = \text{Var}[W_j(\delta)]
\]

\[
= E\left[G\left(\frac{X'_j\delta}{\sqrt{nh}} - \frac{U_j}{h} \right) - q \right]^2 Z_j' Z_j' - [EW_j(\delta)] [EW_j(\delta)]' \]

\[
= E\left[G\left(\frac{X'_j\delta}{\sqrt{nh}} - \frac{U_j}{h} \right) - q \right]^2 Z_j' Z_j' + O(n^{-1} + h^{2\nu}).
\]

Now

\[
E\left\{ \left[G\left(\frac{X'_j\delta}{\sqrt{nh}} - \frac{U_j}{h} \right) - q \right]^2 | Z_j, X_j \right\}
\]

\[
= \int_{U_L(Z_j, X_j)}^{U_H(Z_j, X_j)} \left[G\left(\frac{X'_j\delta}{\sqrt{nh}} - \frac{u}{h} \right) - q \right]^2 \frac{dF_{U|Z,X}(u | Z_j, X_j)}{dh} \left| U_H(Z_j, X_j) \right. \\
+ \left. \frac{2}{h} \int_{U_L(Z_j, X_j)}^{U_H(Z_j, X_j)} F_{U|Z,X}(u | Z_j, X_j) \left[G\left(\frac{X'_j\delta}{\sqrt{nh}} - \frac{u}{h} \right) - q \right] G'\left(\frac{X'_j\delta}{\sqrt{nh}} - \frac{u}{h} \right) \right] du \\
= q^2 + 2 \int_{-1}^{1} F_{U|Z,X}(hv + \frac{X'_j\delta}{\sqrt{n}} | Z_j, X_j) [G(-v) - q] G'(-v)dv \\
= q^2 + 2F_{U|Z,X}(0 | Z_j, X_j) \int_{-1}^{1} [G(-v) - q] G'(-v)dv \\
+ 2hf_{U|Z,X}(0 | Z_j, X_j) \left[\int_{-1}^{1} v[G(-v) - q] G'(-v)dv \right] \\
+ \frac{2}{\sqrt{n}} \left[f_{U|Z,X}(0 | Z_j, X_j) X'_j\delta \int_{-1}^{1} [G(-v) - q] G'(-v)dv \right] + O(h^2 + n^{-1}) \\
= q^2 + F_{U|Z,X}(0 | Z_j, X_j)(1 - 2q) - hf_{U|Z,X}(0 | Z_j, X_j) \left(1 - \int_{-1}^{1} G^2(u)du \right) \\
+ \frac{(1 - 2q)}{\sqrt{n}} \left[f_{U|Z,X}(0 | Z_j, X_j) X'_j\delta \right] + O(h^2 + n^{-1}),
\]
and so

\[V_n = q^2 E Z_j Z_j' + (1 - 2q) E \left[F_{U|Z,X}(0 \mid Z_j, X_j) Z_j Z_j' \right] \]

\[+ h \left(1 - \int_{-1}^{1} G^2(u) du \right) E \left[F_{U|Z,X}(0 \mid Z_j, X_j) Z_j Z_j' \right] \]

\[+ \frac{(1 - 2q)}{\sqrt{n}} E \left\{ \left[F_{U|Z,X}(0 \mid Z_j, X_j) X_j' \delta \right] Z_j Z_j' \right\} + O(n^{-1} + h^2) \]

\[= V - h V^{1/2} E(AA') \left(V^{1/2} \right)' + O\left(n^{-1/2} + h^2 \right), \]

where the last line holds because of the above law of iterated expectation extension and

\[q^2 E Z_j Z_j' + (1 - 2q) E \left[F_{U|Z,X}(0 \mid Z_j, X_j) Z_j Z_j' \right] \]

\[= q^2 E Z_j Z_j' + (1 - 2q) E \left\{ E[1\{U < 0\} \mid Z_j, X_j] Z_j Z_j' \right\} \]

\[= q^2 E Z_j Z_j' + (1 - 2q) E \left\{ E[1\{U < 0\} Z_j Z_j' \mid Z_j, X_j] \right\} \]

\[= q^2 E Z_j Z_j' + (1 - 2q) E \{1\{U < 0\} Z_j Z_j' \} = q(1 - q) E Z_j Z_j'. \]

Let \(\Lambda_n = V_n^{1/2} \), then

\[\Lambda_n = V^{1/2} \left[I_d - h E(AA') + O\left(n^{-1/2} + h^2 \right) \right]^{1/2}. \]

Define \(W_j^* \equiv W_j^*(\delta) = \Lambda_n^{-1} W_j(\delta) \) and

\[\tilde{W}_n^* \equiv \tilde{W}_n^*(\delta) = n^{-1} \sum_{j=1}^{n} W_j^*(\delta). \]

Then \(\Delta = \sqrt{n} E W_j^* \) and

\[\|\Delta\|^2 = \left\| V_n^{-1/2} \Sigma_{ZX} \delta + V_n^{-1/2} \sqrt{n}(-h)^r V_n^{1/2} E(B) \right\|^2 \]

\[= \left\| V_n^{-1/2} V^{1/2} \delta + \sqrt{n}(-h)^r V_n^{1/2} V^{1/2} E(B) \right\|^2 \]

\[= \left\| \left(I_d - h E[A \lambda'] \right)^{-1/2} \delta + \sqrt{n}(-h)^r E(B) \right\|^2 \left(1 + o(1) \right) \]

\[= \left\| \left(I_d + \frac{1}{2} h E[A \lambda'] \right) \delta + \sqrt{n}(-h)^r E(B) \right\|^2 \left(1 + o(1) \right) \]

\[= \left(\|\delta\|^2 + h \delta' \left(E[A \lambda'] \right) \delta + nh^{2r} (EB)'(EB) + 2\delta' \sqrt{n}(-h)^r EB \right) (1 + o(1)). \]

We can now write

\[S_n = m_n(\beta_0)' \tilde{V}^{-1} m_n(\beta_0) = S_n^L + e_n \]

where

\[S_n^L = (\sqrt{n} W_n^*)' \left(\sqrt{n} W_n^* \right) - h \left(\sqrt{n} W_n^* \right)' E(AA') \left(\sqrt{n} W_n^* \right), \]

\[e_n = (\sqrt{n} W_n^*)' \eta_n(\sqrt{n} W_n^*). \]
By the same argument as in the proof of Theorem 3, we can show that the presence of \(e_n \) generates an approximation error that is not larger than that given in Theorem 5.

The characteristic function of \(S_n^L \) is
\[
E\{\exp(itS_n^L)\} = C_0(t) - hC_1(t) + O\left(h^2 + \frac{1}{\sqrt{n}}\right) \quad \text{where}
\]
\[
C_0(t) = E\{\exp\left(it\left(\sqrt{n}W_n^*\right)'\left(\sqrt{n}W_n^*\right)\right)\},
\]
\[
C_1(t) = E\{\exp\left(it\left(\sqrt{n}W_n^*\right)'E(AA')\left(\sqrt{n}W_n^*\right)\exp\left(it\left(\sqrt{n}W_n^*\right)'\left(\sqrt{n}W_n^*\right)\right)\right)\}.
\]

Using the expansion of the PDF of \(n^{-1/2}\sum_{j=1}^n (W_j^* - EW_j^*) : \)
\[
\text{pdf}(x) = (2\pi)^{-d/2} \exp(-x'x/2) [1 + n^{-1/2}p(x)] + O(n^{-1}),
\]
where \(p(x) \) is an odd polynomial in the elements of \(x \) of degree 3, we obtain
\[
C_0(t) = E\{\exp\left(it\left(\sqrt{n}W_n^*\right)'\left(\sqrt{n}W_n^*\right)\right)\}
= (2\pi)^{-d/2} \int \exp\left(it\left[x + \sqrt{n}EW_j^*\right]'\left[x + \sqrt{n}EW_j^*\right]\right) \exp\left(-\frac{1}{2}x'x\right) dx + O\left(\frac{1}{\sqrt{n}}\right)
= (1 - 2it)^{-d/2} \exp\left(it\frac{\left[\sqrt{n}EW_j^*\right]'}{1 - 2it}\right) + O\left(\frac{1}{\sqrt{n}}\right).
\]

Similarly,
\[
C_1(t) = (2\pi)^{-d/2} \int it(x + \sqrt{n}EW_j^*)'E(AA')(x + \sqrt{n}EW_j^*)
\times \exp\left(it\left[x + \sqrt{n}EW_j^*\right]'\left[x + \sqrt{n}EW_j^*\right] - \frac{1}{2}x'x\right) dx + O\left(\frac{1}{\sqrt{n}}\right).
\]

Note that
\[
\begin{align*}
it\left[x + \sqrt{n}EW_j^*\right]'\left[x + \sqrt{n}EW_j^*\right] - \frac{1}{2}x'x \\
= & -\frac{1}{2}(1 - 2it)\left[x - \frac{2it}{1 - 2it}(\sqrt{n}EW_j^*)'\left[x - \frac{2it}{1 - 2it}(\sqrt{n}EW_j^*)\right]\right] \\
+ & \frac{it}{1 - 2it}\left(\sqrt{n}EW_j^*\right)'(\sqrt{n}EW_j^*),
\end{align*}
\]
we have
\[
C_1(t) = (1 - 2it)^{-d/2} \exp\left[\frac{it}{1 - 2it}(\sqrt{n}EW_j^*)'(\sqrt{n}EW_j^*)\right]
\times Eit(\mathbb{X} + \sqrt{n}EW_j^*)'E(AA')(\mathbb{X} + \sqrt{n}EW_j^*) + O\left(\frac{1}{\sqrt{n}}\right)
= O\left(\frac{1}{\sqrt{n}}\right) + (1 - 2it)^{-d/2} \exp\left[\frac{it}{1 - 2it}(\sqrt{n}EW_j^*)'(\sqrt{n}EW_j^*)\right]
\]
Using the above results and taking a Fourier–Stieltjes inversion, we have:

\[
x \times \text{it} \exp(\text{it} S^T) \left[\frac{1}{1 - 2it} I_d + \left(\frac{2it}{1 - 2it} + 1 \right)^2 (\sqrt{n} E W_j^*) (\sqrt{n} E W_j^*)' \right] \nonumber
\]

\[
= O\left(\frac{1}{\sqrt{n}} \right) + (1 - 2it)^{-d/2} \exp\left[\frac{it}{1 - 2it} \left\| \sqrt{n} E W_j^* \right\|^2 \right] \times \text{it} \exp(\text{it} S^T) \left[I_d + \frac{1}{1 - 2it} (\sqrt{n} E W_j^*) (\sqrt{n} E W_j^*)' \right] \nonumber
\]

where \(X \sim N \left[\frac{2it}{1 - 2it} (\sqrt{n} E W_j^*), \text{diag}(1 - 2it)^{-1} \right]. \)

Combining the above steps, we have, for \(r \geq 2, \)

\[
E \{ \exp(it S^T) \} \nonumber
\]

\[
= (1 - 2it)^{-d/2} \exp\left(\frac{it \left\| \sqrt{n} E W_j^* \right\|^2}{1 - 2it} \right) \nonumber
\]

\[
+ (1 - 2it)^{-d/2-1} \exp\left(\frac{it \left\| \sqrt{n} E W_j^* \right\|^2}{1 - 2it} \right) h(-it) \text{tr}(AA') + O\left(h^2 + n^{-1/2} \right) \nonumber
\]

\[
+ (1 - 2it)^{-d/2-2} \exp\left(\frac{it \left\| \sqrt{n} E W_j^* \right\|^2}{1 - 2it} \right) h(-it)(\sqrt{n} E W_j^*)' E(AA')(\sqrt{n} E W_j^*). \nonumber
\]

Let \(G_d'(x; \lambda) \) be the PDF of the noncentral chi-square distribution with noncentrality parameter \(\lambda, \) so

\[
G_d'(x; \lambda) = \frac{1}{2\pi} \int_{\mathbb{R}} (1 - 2it)^{-d/2} \exp\left(\frac{it \lambda}{1 - 2it} \right) \exp(-itx) dt, \quad (16) \nonumber
\]

\[
G_d''(x; \lambda) = \frac{1}{2\pi} \int_{\mathbb{R}} (-it)(1 - 2it)^{-d/2} \exp\left(\frac{it \lambda}{1 - 2it} \right) \exp(-itx) dt. \nonumber
\]

Using the above results and taking a Fourier–Stieltjes inversion, we have:

\[
P_{\beta_n}(S_n < x) = G_d(x; \|\Delta\|^2) + G_{d+2}(x; \|\Delta\|^2) h [\text{tr} E(AA')] \nonumber
\]

\[
+ G_d'(x; \|\Delta\|^2) h [\Delta' E(AA') \Delta] + O\left(h^2 + \frac{1}{\sqrt{n}} \right). \nonumber
\]

Expanding \(G_d\left(x; \|\Delta\|^2 \right) \) around \(G_d\left(x; \|\delta\|^2 \right) \) yields

\[
G_d\left(x; \|\Delta\|^2 \right) = G_d\left(x; \|\delta\|^2 \right) + \frac{\partial G_d(x, \lambda)}{\partial \lambda} \bigg|_{\lambda=\|\delta\|^2} \nonumber
\]

\[
\times \left[h \delta' E(AA') \delta + nh^{2r} (EB)'(EB) + 2 \delta' \sqrt{n}(-h)'EB \right] (1 + o(1)) \nonumber
\]

\[
= G_d\left(x; \|\delta\|^2 \right) - G_{d+2}(x; \|\delta\|^2) \nonumber
\]
\[
\times \left[h\delta'(EAA')\delta + nh^{2r}(EB)'(EB) + 2\delta' \sqrt{n}(-h)^r EB \right] (1 + o(1))
\]
using the result that \(\frac{\partial}{\partial x} G_d(x; \lambda) = -G_d'(x; \lambda) \), which can be derived from [16]. Hence

\[
P_{\delta_n}(S_n < x) = G_d\left(x; \|\delta\|^2\right) - G_{d+2}\left(x; \|\delta\|^2\right) [nh^{2r}(EB)'(EB) - h\text{tr}E(AA')]
\]
\[
+ [G_{d+4}'(x; \tau^2) - G_{d+2}'(x; \tau^2)] h\left[\delta' E(AA') \delta\right]
\]
\[
- G_{d+2}'(x; \|\delta\|^2) 2\delta' \sqrt{n}(-h)^r E + O\left(h^2 + n^{-1/2}\right).
\]

Under the assumption that \(\tilde{\delta} \) is uniform on the sphere \(S_d(\tau) \), we can write \(\tilde{\delta} = \tau\xi/\|\xi\| \) where \(\xi \sim N(0, I_d) \). Then

\[
E\tilde{\delta} P_{\delta_n}(S_n < x) = G_d\left(x; \tau^2\right) - G_{d+2}'(x; \tau^2) [nh^{2r}(EB)'(EB) - h\text{tr}E(AA')]
\]
\[
+ [G_{d+4}'(x; \tau^2) - G_{d+2}'(x; \tau^2)] \tau^2 h\text{tr}[E(AA') E\xi\xi'/\|\xi\|^2] + O\left(h^2 + n^{-1/2}\right)
\]
where \(E\xi \) is the expectation with respect to \(\xi \). As a consequence,

\[
E\tilde{\delta} P_{\delta_n}(S_n > x) = 1 - G_d\left(x; \tau^2\right) + G_{d+2}'(x; \tau^2) [nh^{2r}(EB)'(EB) - h\text{tr}E(AA')]
\]
\[
- [G_{d+4}'(x; \tau^2) - G_{d+2}'(x; \tau^2)] \frac{\tau^2}{d} h\text{tr}[E(AA')] + O\left(h^2 + n^{-1/2}\right).
\]
Letting \(x = c_\alpha \) yields the desired result. □

Proof of Corollary [6]. By direct calculations, we have

\[
E\tilde{\delta} P_{\delta_n}(S_n > c_\alpha^*) = 1 - G_d(c_\alpha^*; \tau^2) + G_{d+2}'(c_\alpha^*; \tau^2) [nh^{2r}(EB)'(EB) - h\text{tr}E(AA')]
\]
\[
- [G_{d+4}'(c_\alpha^*; \tau^2) - G_{d+2}'(c_\alpha^*; \tau^2)] \frac{\tau^2}{d} h\text{tr}[E(AA')] + O\left(h^2 + n^{-1/2}\right)
\]
\[
= 1 - G_d(c_\alpha; \tau^2) + G_{d+2}'(c_\alpha; \tau^2) \frac{G_{d+2}'(c_\alpha)}{G_d(c_\alpha)} \left(1 - \frac{1}{2r}\right) \text{tr}\{E(AA')\} h_{\text{SEE}}^*
\]
\[
+ G_{d+2}'(c_\alpha; \tau^2) \left[\frac{1}{2r} - 1\right] \text{tr}\{E(AA')\} h_{\text{SEE}}^*
\]
\[
- [G_{d+4}'(c_\alpha; \tau^2) - G_{d+2}'(c_\alpha; \tau^2)] \frac{\tau^2}{d} h\text{tr}[E(AA')] + O\left(h^2 + n^{-1/2}\right)
\]
\[
= 1 - G_d(c_\alpha; \tau^2) + Q_d(c_\alpha, \tau^2, r) \text{tr}E(AA') h_{\text{SEE}}^* + O\left(h_{\text{SEE}}^* + n^{-1/2}\right),
\]
(17)
where

\[Q_d(c_\alpha, \tau^2, r) = \left[G_d'(c_\alpha; \tau^2) \frac{G_{d+2}'(c_\alpha)}{G_d'(c_\alpha)} - G_d'(c_\alpha; \tau^2) \right] \left(1 - \frac{1}{2r} \right) \\
- \frac{1}{d} \left[G_{d+4}'(c_\alpha; \tau^2) - G_{d+2}'(c_\alpha; \tau^2) \right] \tau^2 \]

as desired.

Lemma 9. Let the assumptions in Theorem 7 hold. Then

\[\sqrt{n}(\hat{\beta} - \beta_0) = -\left\{ E \frac{\partial}{\partial \beta} \frac{1}{\sqrt{n}} m_n(\beta_0) \right\}^{-1} m_n + O_p\left(\frac{1}{\sqrt{nh}} \right) + O_p\left(\frac{1}{\sqrt{n}} \right), \]

and

\[E \frac{\partial}{\partial \beta} \frac{1}{\sqrt{n}} m_n(\beta_0) = \Sigma_Z X + O(h^r). \]

Proof. We first prove that \(\hat{\beta} \) is consistent. Using the Markov inequality, we can show that when \(E(\|Z_j\|^2) < \infty \),

\[\frac{1}{\sqrt{n}} m_n(\beta) = \frac{1}{\sqrt{n}} E m_n(\beta) + o_p(1) \]

for each \(\beta \in \mathcal{B} \). It is easy to show that the above \(o_p(1) \) term also holds uniformly over \(\beta \in \mathcal{B} \). But

\[\lim_{h \to 0} \sup_{\beta \in \mathcal{B}} \left\| \frac{1}{\sqrt{n}} E m_n(\beta) - E(Z[1\{Y < X'\beta\} - \bar{q}] \right\| = 0 \]

by the dominated convergence theorem, where \(\beta^* \) is the value of \(\beta \) that achieves the maximum. Hence

\[\frac{1}{\sqrt{n}} m_n(\beta) = E(Z[1\{Y < X'\beta\} - \bar{q}]) + o_p(1) \]

uniformly over \(\beta \in \mathcal{B} \). Given the uniform convergence and the identification condition in Assumption 6, we can invoke Theorem 5.9 of van der Vaart (1998) to obtain that \(\hat{\beta} \to \beta_0 \).

Next we prove the first result of the lemma. Under Assumption 4(i–ii), we can use the elementwise mean value theorem to obtain

\[\sqrt{n}(\hat{\beta} - \beta_0) = -\left[\frac{\partial}{\partial \beta'} \frac{1}{\sqrt{n}} m_n(\hat{\beta}) \right]^{-1} m_n \]

where

\[\frac{\partial}{\partial \beta'} m_n(\beta) = \left[\frac{\partial}{\partial \beta} m_{n,1}(\hat{\beta}_1), \ldots, \frac{\partial}{\partial \beta} m_{n,d}(\hat{\beta}_d) \right]' \]

and each \(\hat{\beta}_i \) is a point between \(\hat{\beta} \) and \(\beta_0 \). Under Assumptions 1 and 4(i–ii) and that \(E \frac{\partial}{\partial \beta'} \frac{1}{\sqrt{n}} m_n(\beta) \) is continuous at \(\beta = \beta_0 \), we have, using standard textbook arguments, that
As a result, write which, combined with the continuity of \(\Sigma_{ZX} \), we have \(\sqrt{n}(\hat{\beta} - \beta_0) = O_p(1) \). With this rate of convergence, we can focus on a \(\sqrt{n} \) neighborhood \(N_0 \) of \(\beta_0 \). We write

\[
\sqrt{n}(\hat{\beta} - \beta_0) = -\left\{ \frac{\partial}{\partial \beta'} \frac{1}{\sqrt{n}} m_n(\beta_0) + \frac{\partial}{\partial \beta'} \frac{1}{\sqrt{n}} \left[m_n(\hat{\beta}) - m_n(\beta_0) \right] \right\}^{-1} m_n.
\]

Using standard arguments again, we can obtain the following stochastic equicontinuity result:

\[
\sup_{\beta \in N_0} \left\| \frac{\partial}{\partial \beta'} m_n(\beta) - E \frac{\partial}{\partial \beta'} m_n(\beta) \right\| = O_p(1),
\]

which, combined with the continuity of \(E \frac{\partial}{\partial \beta'} m_n(\beta) \), implies that

\[
\left[\frac{\partial}{\partial \beta'} \frac{1}{\sqrt{n}} \left[m_n(\hat{\beta}) - m_n(\beta_0) \right] \right] = O_p\left(\frac{1}{\sqrt{n}} \right).
\]

Therefore

\[
\sqrt{n}(\hat{\beta} - \beta_0) = -\left\{ \frac{\partial}{\partial \beta'} \frac{1}{\sqrt{n}} m_n(\beta_0) + O_p\left(\frac{1}{\sqrt{n}} \right) \right\}^{-1} m_n = -\left\{ \frac{\partial}{\partial \beta'} \frac{1}{\sqrt{n}} m_n \right\}^{-1} m_n + O_p\left(\frac{1}{\sqrt{n}} \right).
\]

Now

\[
\text{Var}\left(\text{vec}\left[\frac{\partial}{\partial \beta'} m_n / \sqrt{n} \right] \right) = n^{-1} \text{Var}\left[\text{vec}(Z_j X_j') h^{-1} G'(-U_j / h) \right] \leq n^{-1} E \left[\text{vec}(Z_j X_j') \left[\text{vec}(Z_j X_j') \right]' h^{-2} [G'(-U_j / h)]^2 \right] = n^{-1} E \left\{ \text{vec}(Z_j X_j') \left[\text{vec}(Z_j X_j') \right]' \int h^{-2} [G'(-u/h)]^2 f_{U|Z,X}(u | Z_j, X_j) du \right\} = (nh)^{-1} E \left\{ \text{vec}(Z_j X_j') \left[\text{vec}(Z_j X_j') \right]' \int [G'(v)]^2 f_{U|Z,X}(-hv | Z_j, X_j) dv \right\} = O\left(\frac{1}{nh} \right),
\]

so

\[
\frac{\partial}{\partial \beta'} \frac{1}{\sqrt{n}} m_n = E \frac{\partial}{\partial \beta'} \frac{1}{\sqrt{n}} m_n + O_p\left(\frac{1}{\sqrt{nh}} \right).
\]

As a result,

\[
\sqrt{n}(\hat{\beta} - \beta_0) = -\left\{ E \frac{\partial}{\partial \beta'} \frac{1}{\sqrt{n}} m_n + O_p\left(\frac{1}{\sqrt{nh}} \right) \right\}^{-1} m_n + O_p\left(\frac{1}{\sqrt{n}} \right).
\]
\[- \left\{ E \frac{\partial}{\partial \beta'} \frac{1}{\sqrt{n}} m_n \right\}^{-1} m_n + O_p \left(\frac{1}{\sqrt{n}} \right) + O_p \left(\frac{1}{\sqrt{n}} \right).\]

For the second result of the lemma, we use the same technique as in the proof of Theorem 1. We have

\[
E \left[\frac{\partial}{\partial \beta'} \frac{m_n}{\sqrt{n}} \right] = E \left[\frac{1}{nh} \sum_{j=1}^{n} Z_j X_j' G'(-U_j/h) \right] = E \left[E \left\{ Z_j X_j' h^{-1} G'(-U_j/h) \mid Z_j, X_j \right\} \right]
\]

\[
= E \left[Z_j X_j' \int G'(-u/h) f_{U|Z,X}(u \mid Z_j, X_j) d(u/h) \right]
\]

\[
= E \left[Z_j X_j' \int G'(v) f_{U|Z,X}(-hv \mid Z_j, X_j) dv \right]
\]

\[
= E \left[Z_j X_j' f_{U|Z,X}(0 \mid Z_j, X_j) \right] + O(h^r),
\]

as desired.